
BlenderLLM: Training Large Language Models for Computer-Aided
Design with Self-improvement

Yuhao Duα, Shunian Chenα, Wenbo Zanα, Peizhao Liα, Mingxuan Wangα,
Dingjie Songα, Bo Liγ , Yan Huα, Benyou Wangα*
αThe Chinese University of Hong Kong, Shenzhen

γInformation Technology Research Institute, China Tower
*Correspondence: wangbenyou@cuhk.edu.cn

Abstract
The application of Large Language Models
(LLMs) in Computer-Aided Design (CAD)
remains an underexplored area, despite their
remarkable advancements in other domains.
In this paper, we present BlenderLLM, a
novel framework for training LLMs specifically
for CAD tasks leveraging a self-improvement
methodology. To support this, we developed a
bespoke training dataset, BlendNet, and intro-
duced a comprehensive evaluation suite, CAD-
Bench. Our results reveal that existing models
demonstrate significant limitations in generat-
ing accurate CAD scripts. However, through
minimal instruction-based fine-tuning and it-
erative self-improvement, BlenderLLM signif-
icantly surpasses these models in both func-
tionality and accuracy of CAD script genera-
tion. This research establishes a strong foun-
dation for the application of LLMs in CAD
while demonstrating the transformative poten-
tial of self-improving models in advancing
CAD automation. We encourage further ex-
ploration and adoption of these methodolo-
gies to drive innovation in the field. The
dataset, model, benchmark, and source code are
publicly available at https://github.com/
FreedomIntelligence/BlenderLLM

1 Introduction

CAD is extensively used in industries such as au-
tomotive, aerospace, manufacturing, and architec-
ture for 3D design (Heesom and Mahdjoubi, 2004;
Pottmann et al., 2005; Susic et al., 2017). De-
spite its widespread application, the effective use
of CAD often demands specialized skills and sub-
stantial training, making the design process both
labor-intensive and time-consuming. Tasks like pa-
rameter adjustments and model validation require
considerable human effort, leading to increased
project costs and slowing down rapid iteration and
innovation (Kreis et al., 2020).

Large language models (LLMs) have experi-
enced rapid advancements in recent years, par-

Instruction
Please drow a chair. The
chair features four cylindrical
legs in a deep mahogany
color. The seat is circular in a
forest green color...

CAD Script
obj =
bpy.context.object
obj.scale = size
mat.diffuse_color =
color
...

BlenderLLM

Blender

CAD ImageCAD Image

Figure 1: Illustrative Instances

ticularly in architecture and training methodolo-
gies. Sophisticated models such as GPT-4 (OpenAI,
2023) have demonstrated human-like performance
on a variety of tasks. Their ability to generate co-
herent and contextually relevant text has made them
valuable across numerous applications, including
potentially transforming the way CAD tasks are
approached.

Problem Definition This paper addresses the
challenge of reducing the manual workload associ-
ated with CAD design by leveraging the capabili-
ties of LLMs. As illustrated in Figure 1, we utilize
LLMs to automate the generation of CAD scripts
from natural language inputs. These scripts can
be executed in Blender to create precise 3D mod-
els. By converting user instructions into executable
CAD scripts, our approach streamlines the CAD
process, thereby alleviating the manual workload
for engineers and designers.

Challenges Although recent work (Kreis et al.,
2020; Aarya, 2023; Wu et al., 2023; Zhang et al.,
2024) has explored the application of LLM in the
CAD field, several significant challenges still hin-
der its widespread adoption. Firstly, some work is
limited by the complexity of input forms, resulting
in a high threshold for use. Secondly, there is a
notable shortage of high-quality, domain-specific

1

ar
X

iv
:2

41
2.

14
20

3v
1

 [
cs

.H
C

]
 1

6
D

ec
 2

02
4

mailto:wangbenyou@cuhk.edu.cn
https://github.com/FreedomIntelligence/BlenderLLM
https://github.com/FreedomIntelligence/BlenderLLM

BlenderLLM o1-Preview GPT-4o GPT-4-
Turbo

Claude-3.5-
Sonnet

Gemini-
1.5-Pro

BlenderGPT

Burger ✗

Desk
Lamp

Celtic
Knot

✗ ✗ ✗ ✗

Table 1: Examples of the performance of different LLMs. Note: ✗ means that the CAD script generated by the
model result in an error during execution, thus no corresponding 3D model is generated.

datasets required to train models capable of captur-
ing the intricate nuances of CAD design. Thirdly,
the lack of open-source models limits accessibility,
local deployment, and privacy preservation. Fi-
nally, the absence of a comprehensive evaluation
framework hampers the ability to rigorously assess
LLM performance in CAD applications. Address-
ing these challenges is critical for advancing CAD-
oriented LLMs and ensuring robust, secure, and
on-premises solutions.

Methodology To address the aforementioned
challenges, we present a novel framework consist-
ing of three key components that allow users to gen-
erate CAD models with natural language: Blend-
Net, a high-quality dataset comprising 8k samples;
BlenderLLM, a CAD script generation model; and
CADBench, a comprehensive benchmarking suite.
First, we construct a multi-module data generation
pipeline to create BlendNet, whose samples map
natural language instructions to bpy scripts. Then,
we use BlendNet to fine-tune a model, obtaining
the BlenderLLM-base. To further address the issue
of data scarcity, we employ a self-improvement
approach, utilizing data generated by the model it-
self to enhance its performance through an iterative
process. Furthermore, we introduce a specialized
benchmark, CADBench, an evaluation framework
employing MLLM-as-judge (Ge et al., 2024) for
assessing a model’s capacity to generate 3D models
from open-ended instructions.

Empirical evaluations demonstrate that Blender-
LLM outperforms all baseline models across multi-
ple dimensions on CADBench. Examples are shown
in Table 1. Contributions of this paper are summa-
rized as follows:

• We introduce a high-quality dataset, Blend-
Net, comprising 8k diverse CAD samples,

along with its data generation pipeline.

• We train a novel bpy script generation model,
BlenderLLM, which undergoes Supervised
Fine-tuning and iterative self-improvement
process to achieve state-of-the-art perfor-
mance.

• We develop a benchmarking framework,
CADBench, to evaluate the model’s ability
to generate CAD scripts from user-provided
instructions, enabling a systematic assessment
of CAD generation capabilities.

2 Related Work

2.1 Computer-Aided Design (CAD)
CAD is a widely used technology in various indus-
tries, enabling engineers and designers to create
precise digital representations of objects, offering
significant advantages in precision, flexibility, and
speed. Early efforts leveraged rule-based systems
and simple machine learning algorithms to assist
in CAD tasks (Chavali et al., 2008). Later, convo-
lutional neural networks were used to convert 2D
sketches into 3D models (Li et al., 2020). How-
ever, these methods have limitations. Rule-based
systems lack flexibility, while machine learning re-
quire extensive labeled data and are constrained by
their training data’s scope (Rapp et al., 2021).

2.2 Large Language Models for CAD
Recent work has begun to explore how LLMs can
be adapted for CAD tasks. For instance, CADGPT
(Kapsalis, 2024) directly parses natural language in-
puts into executable commands for CAD software.
BlenderGPT (Aarya, 2023) and 3D-PREMISE (Ze-
qing et al., 2024) have utilized LLMs like GPT-4
to generate CAD scripts based on natural language
prompts. Additionally, CAD-LLM (Wu et al.,

2

2023) has successfully trained a T5 model for CAD
sketch completion. Moreover, CadVLM (Zhang
et al., 2024) introduces a multimodal approach that
bridges language and vision, enabling the genera-
tion of parametric CAD sketches from both textual
and visual inputs. Appendix A outlines the key dif-
ferences between BlenderLLM and existing LLMs
designed for CAD-related tasks.

2.3 Blender

Blender is an open-source 3D creation suite widely
used in film, game development, and architectural
visualization, offering a comprehensive toolset for
modeling, animation, and rendering, with flexibil-
ity enhanced by its Python API (bpy scripts). Its
advantages over other CAD software, including a
lower learning curve and broader user base (Hosen
and Ahmmed, 2019; Tuori, 2022), make it the ideal
platform for CAD tasks. In our work, Blender is
used for rendering CAD scripts, acting as an inter-
mediary between the large language model outputs
and the visual results.

3 Methodology

3.1 Data Construction

We design and implement a multi-module pipeline
for generating high-quality training data for SFT.
The pipeline for data construction is illustrated in
Figure 2. The multi-module pipeline is composed
of three primary components: the Text Module,
the Image Module, and the Verification Module.
The Text Module generates instructions and their
corresponding bpy scripts. The Image Module exe-
cutes these bpy scripts within Blender to produce
images. The Verification Module ensures that the
images align with the instructions, thereby validat-
ing the data quality.

3.1.1 Text Module
The objective of the text module is to develop di-
verse instructions and corresponding bpy scripts.

Instruction Generation To encompass a broad
range of item types, emulate various communica-
tion styles (Sims, 2017), and craft instructions with
differing levels of complexity, the diversity of the
instructions is categorized along three dimensions:

• Object Categories: Objects are classified
into 16 categories following the Locarno clas-
sification system (Organization, 2013), as de-
tailed in Appendix B.1.1.

• Instruction Types: We employ the Myers-
Briggs Type Indicator (MBTI) (Myers, 1985)
to create eight distinct tones for instructions,
as detailed in Appendix B.1.2.

• Complexity: To manage the complexity of
instructions, we vary their length, classifying
them into five categories, as detailed in Ap-
pendix B.1.3.

Based on these dimensions, we manually create
a set of 135 diverse seed instructions, denoted as
Lseed = {l1, l2, . . . , l135}, where li denotes the ith

natural language instruction. Next, we employ Self-
Instruct data distillation techniques (Wang et al.,
2022) to expand these seed instructions into a larger
dataset. In each iteration of instruction genera-
tion, we randomly sample instances from the Lseed.
These sampled instances are used to generate new
instructions. Through multiple iterations, this pro-
cess results in a comprehensive dataset of approxi-
mately 50k instructions, denoted as Lgen.

The distribution of both seed instructions Lseed
and generated instructions Lgen by category, type,
and length is illustrated in Figure 3. The detailed
process is outlined in Appendix B.2.

Script Generation We then utilize GPT-4o1 to
generate pairs ⟨lj , sj⟩ based on given instructions
lj . For each instruction lj ∈ Lgen, GPT-4o pro-
duces a corresponding script sj . The generation
process ensures that each script is derived from its
instruction, as detailed in Appendix B.4.

3.1.2 Image Module
We render the scripts using Blender to generate cor-
responding images. For each generated 3D object,
four images are captured from different angles to
better capture the full view of 3D objects, resulting
in ⟨lj , Ij⟩ pairs, where Ij = {ij,1, ij,2, ij,3, ij,4} is
the set of images.

3.1.3 Verification Module
We use GPT-4o as the validator. The model is re-
quired to determine whether the images match the
instruction based on the given ⟨lj , Ij⟩ pairs, de-
tailed instruction can be found in Appendix B.5.

To verify the reliability of GPT-4o as the val-
idator, we perform manual cross-validation on a
portion of the data. We manually validate 10k
data points, of which 89.7% produce consistent re-
sults with the GPT-4o verification, demonstrating

1Model id gpt-4o-2024-08-06

3

Scripts
<Instruction, Images>

Image Module

Valid Data

Invalid Data

Scripts

Valid Data

<Instruction, Images>

 Base Model

if n=1Instructions

 BlenderLLMn-1

 Base Filter Coarse Filter

Valid Pairs

Self-Instrct

Script Generation

Text M
odule Instructions

Data Construction

Seed Tasks BlenderLLMn

 Verification
 Module

 Blender

Fine Filter

Model Training

Cascade Filter

SFT
Model Optimization

Manual
Annotation

Data Data Transmission Data Input FreezingSFT TrainingData Output

Figure 2: The Pipeline of the Methodology. In Step I, we utilize a multi-module pipeline to construct a high-quality
training dataset and fine-tune the Base Model and Base Filter on it, establishing a foundation for the next phase. In
Step II, the model is fine-tuned by Self-improvement until achieving the optimal model.

the reliability of GPT-4o as a validator. Detailed
cross-validation result is shown in Appendix B.6.

As a result, we obtain 2k accurate ⟨lj , sj⟩
pairs through manual verification, referred to as
BlendNet-Human, and 6k ⟨lj , sj⟩ pairs validated
solely by GPT-4o, referred to as BlendNet-GPT.
Combining these two parts, we obtain BlendNet.

The diversity of BlendNet is illustrated in Fig-
ure 3. Additionally, we quantify the complexity
of BlendNet tasks using three metrics: Unit Num-
ber, Parameter Density, and Entropy (Contero
et al., 2023). More details about these metrics can
be found in Appendix B.7, and sample data is pro-
vided in Appendix B.8.

3.2 Model Optimization

The development of BlenderLLM involves a two-
phase optimization process: Supervised Fine-
tuning (SFT) and Self-improvement.

3.2.1 Step I: Supervised Fine-tuning
We utilize the aforementioned data to fine-tune the
Qwen2.5-Coder-7B-Instruct model, thereby ob-
taining the BlenderLLM-base, which serves as the
base model for the next step’s optimization, de-
noted as M0.

3.2.2 Step II: Self-improvement
Due to the limited data, we employed a self-
improvement approach, allowing the model to fur-
ther optimize itself using data it generates. Specifi-
cally, we trained a filter with previous data to select
high-quality data generated by the model, and then
iteratively optimized the model through a cycle of
data generation and model training.

Cascade Filter We utilize BlendNet-Human and
BlendNet-GPT as positive examples. 8k samples
are selected as negative examples from the remain-
ing ⟨lj , sj⟩ pairs. These data are employed to fine-
tune the Qwen2-VL-7B-Instruct model, resulting
in the Coarse Filter. Combined with GPT-4o, which
functions as the Fine Filter, they form a Cascade Fil-
ter through a cascaded mechanism. Appendix C.2
summarizes the precision of each filter.

Data Generation: In the i-th iteration, we gener-
ate training data using the model from the previous
iteration Mi−1. Specifically, for each instruction lj ,
we obtain a script sj through inference with Mi−1.
We denote the generated dataset for iteration i as
Di = {⟨lj , sj⟩i}. These pairs are rigorously fil-
tered using the Cascade Filter F (lj , sj) → {0, 1}
to ensure high-quality data selection, retaining only
those pairs for which F (lj , sj) = 1.

Model Training: The selected high-quality data
from the data generation phase is used to fine-tune
the model Mi−1. This process uses the filtered data
to update Mi−1, thereby resulting Mi.

The process alternates between data generation
and model training, creating an iterative approach
to model refinement through Self-improvement, un-
til the loss doesn’t drop on the validation set. More
details can be found in Appendix C.

4 Benchmarking CAD

In response to the lack of a benchmark for assess-
ing CAD script generation, we develop CADBench,
a system designed to quantitatively evaluate this
capability utilizing the method of MLLM-as-a-
judge (Ge et al., 2024). CADBench comprises 700
meticulously designed instructions, offering a com-

4

An
im

al
Cu

isi
ne

Fa
sh

io
n

Fo
od

Fu
rn

Gr
ap

hi
cs

Ho
m

e
M

ed
La

b
M

us
ic

Of
fic

e
Po

we
r

Re
cr

e
Te

ch
To

ol
s

Tr
an

sp
or

t
Tr

av
el

Category

0%

2%

5%

8%

10%

12%

15%

18%

20%

Pr
op

or
tio

n
Category Distribution

SeedTasks
RawData
BlendNetHuman
BlendNetGPT
BlendNet
CADBench-Sim

Comp Deco Design Feat Feel Look Use Verbal
Instruction Type

0%

5%

10%

15%

20%

25%

Pr
op

or
tio

n

Instruction Type Distribution

SeedTasks
RawData
BlendNetHuman
BlendNetGPT
BlendNet
CADBench-Sim

0 20 40 60 80 100
Instruction Length (Word Count)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

Instruction Length Density (Word Count)

SeedTasks
RawData
BlendNetHuman
BlendNetGPT
BlendNet
CADBench-Sim

Figure 3: Diversity in Training and Evaluation Datasets. Each dataset is designed to ensure a uniform distribution
across Category and Instruction Type, while maintaining a broad-ranging density in Instruction Length.

prehensive dataset for evaluation. Given the open-
ended nature of the task, no fixed ground truth is
established. Instead, the evaluation process em-
ploys a flexible and realistic framework that make
the evaluation through predefined criteria.

4.1 Design Principles

CADBench is developed by the principles of user-
centric, comprehensiveness, granularity and relia-
bility.

User-Centric To simultaneously meet the di-
versity of test cases and align with practi-
cal applications, we constructed CADBench-Sim
and CADBench-Wild through synthesized data
and the collection of real data, respectively.
CADBench-Sim provides controlled synthetic data
for baseline testing, covering multiple scenarios,
while CADBench-Wild offers real-world internet-
sourced data to assess the model’s practical perfor-
mance and adaptability.

Comprehensiveness The comprehensive nature
of CADBench is driven by the necessity to rigorously
evaluate 3D generative models across a wide array
of object categories, instruction types, and com-
plexities. By systematically covering all categories
defined in Appendices B.1, the benchmark pro-
vides a robust and inclusive assessment of model
performance and generalizability.

Granularity The fine-grained evaluation ap-
proach of CADBench significantly enhances the
benchmark’s ability to provide detailed insights
into model performance. By incorporating eval-
uation criteria across three dimensions, as show
in Figure 4CADBench ensures that models are thor-
oughly evaluated on diverse aspects, leading to a
deeper understanding of their strengths and weak-
nesses. Detailed explanations and examples of each

Figure 4: Dimensions of Criteria. Numbers represent
the average count of criteria in that dimension.

evaluation dimension are available in Appendix D.

Reliability Ensuring the reliability of CADBench
is paramount, and this is achieved through manual
annotation of grading criteria for each sample in
CADBench. It is also ensured by consistent evalua-
tion and alignment with human preferences. This
meticulous approach provides a dependable frame-
work for assessing model performance, fostering
trust in the results. For detailed insights into the
annotation process, please refer to Appendix G.2.

4.2 CADBench Construction
4.2.1 Part I: CADBench-Sim
CADBench-Sim comprises 500 synthetic sam-
ples. To ensure the comprehensiveness of
CADBench-Sim, we employed the Text Module
from Section 3.1 to generate the instruction data
for CADBench-Sim. The resulting distribution is
shown in Figure 3.

4.2.2 Part II: CADBench-Wild
CADBench-Wild incorporates 200 real-world 3D
modeling questions, sourced from various CAD-
related online forums2. These questions represent

2https://blenderartists.org/c/general-forums/5
https://www.reddit.com/r/blender/

5

https://blenderartists.org/c/general-forums/5
https://www.reddit.com/r/blender/

complex, real-world scenarios that are substantially
more challenging than synthetic tasks, positioning
them as out-of-distribution (OOD) data relative to
the training data of BlenderLLM. By reflecting ac-
tual user requirements, CADBench-Wild offers a
critical opportunity to evaluate the generalization
capacity of BlenderLLM beyond synthetic environ-
ments. The integration of these tasks ensures that
CADBench encompasses both synthetic scenarios
and real-world applications, providing a compre-
hensive assessment for the LLMs.

4.3 Criteria

Given the open-ended evaluation characteristics
of CAD model assessment, we assist GPT-4o in
evaluation by providing customized criteria, in-
stead of ground truth, for each test sample. To
achieve a comprehensive and detailed assessment,
we designed the criteria from top to bottom into
3 major dimensions and 8 minor dimensions, as
shown in the Figure 4. After determining the cri-
teria dimensions, we employ GPT-4o to generate
a draft criteria for each sample, and thenmanually
verify the criteria following the instruction in Ap-
pendix G.2, with criteria examples available in the
Appendix D.2. The introduction of criteria not only
enhances the comprehensiveness of the evaluation
but also improves the consistency between model
assessment and human evaluation, as mentioned in
the next section.

4.4 Evaluation Protocol

Evaluation Procedure CADBench operates
through three distinct stages.

The first stage is script generation. Let e repre-
sent the one-shot example used to guide the LLM.
The LLM generates a bpy script s = f(l, e) based
on these instructions and the context. This ensures
improved responses and maintains comparability
with BlenderLLM’s results.

Second, the generated script s is executed in
Blender to produce a set of rendered images I =
{i1, i2, i3, i4}, where each ik is a screenshot cap-
tured from different angles.

Finally, these images I along with the script
are evaluated by GPT-4o using predefined scor-
ing criteria. For each criterion ci, we define the
evaluation function E(l, I, s, ci) → {0, 1}, where
E(l, I, s, ci) = 1 if the criterion is satisfied and 0
otherwise.

https://discord.com/channels/
185590609631903755/1006638436255551620

Evaluation Methodology To accurately assess
the generated CAD outputs from different aspects,
we employ GPT-4o for two complementary evalua-
tion approaches:

• Image-Based Evaluation: This approach tar-
gets the spatial aspects of the CAD scripts
which are hard to evaluate without image.
Each criterion ci is assessed for visual fidelity
using the evaluation function EI(l, I, ci).

• Script-Based Evaluation: To accurately as-
sess objective attributes such as size, color,
and material, which are challenging to evalu-
ate visually, we evaluate directly using the bpy
script s. The evaluation function ES(l, s, ci)
ensures precise scoring of these attributes.

The detailed evaluation process is provided in
Appendix E.

Evaluation Reliability To verify the reliability
of the LLM-as-a-Judge framework, two human
evaluators independently review a sample of 200
outputs from different models. Appendix G.3
presents the details of the manual annotation for
evaluation. And the human evaluation resulted in
a kappa value of 0.883. The inter-rater reliability
between LLM and the human evaluators is calcu-
lated using Cohen’s kappa coefficient, yielding a
kappa value of 0.791, which signifies a high level
of agreement.

4.5 Evaluation Metrics

For each model, the final score is calculated by
averaging the outputs across all criteria:

Score =
1

|C|
∑
ci∈C

E(l, I, s, ci)

Note that for some of the criteria, the image input
I is empty, while for others, script input s is empty.
See Appendix D.4 for more details.

5 Experiments

5.1 Training Details

We use Qwen2.5-Coder-7B-Instruct as the base
model and fine-tune it on BlendNet-Human to ob-
tain the BlenderLLM-base. For subsequent rounds,
the input data size is fixed at 2k samples to prevent
training data saturation and overfitting. During the
SFT, full parameter fine-tuning is applied. Each
model training session is conducted on four A800

6

https://discord.com/channels/185590609631903755/1006638436255551620
https://discord.com/channels/185590609631903755/1006638436255551620

Models CADBench-Sim CADBench-Wild

Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓

Closed-source Models
o1-Preview 0.729 0.707 0.624 0.687± 0.045 15.6% 0.595 0.612 0.542 0.583± 0.030 17.5%
GPT-4-Turbo 0.658 0.621 0.488 0.589± 0.073 18.2% 0.526 0.541 0.478 0.515± 0.027 24.5%
Claude-3.5-Sonnet 0.687 0.608 0.482 0.593± 0.084 15.6% 0.529 0.508 0.43 0.489± 0.043 26.5%
GPT-4o 0.623 0.593 0.479 0.565± 0.062 21.4% 0.460 0.466 0.408 0.444± 0.026 28.5%
BlenderGPT 0.574 0.540 0.444 0.519± 0.055 25.2% 0.402 0.425 0.368 0.398± 0.023 35.0%
Gemini-1.5-Pro 0.535 0.483 0.387 0.468± 0.061 30.2% 0.375 0.404 0.361 0.380± 0.018 38.0%

Open-source Models
DeepSeek-V2.5 0.569 0.497 0.372 0.479± 0.081 25.2% 0.422 0.394 0.345 0.387± 0.032 34.0%
Qwen2.5-Coder-7B-Instruct 0.457 0.352 0.251 0.353± 0.084 31.4% 0.354 0.327 0.250 0.310± 0.044 37.0%
Qwen2.5 0.367 0.274 0.193 0.278± 0.071 44.8% 0.220 0.219 0.170 0.203± 0.023 58.5%
LLaMA-3.1-8B-Instruct 0.125 0.087 0.071 0.094± 0.023 76.0% 0.130 0.127 0.105 0.120± 0.011 65.5%
Mistral-7B-Instruct-V0.3 0.015 0.018 0.015 0.016± 0.001 96.8% 0.023 0.031 0.030 0.028± 0.004 93.0%
CodeLLaMA-7B-Instruct 0.005 0.004 0 0.003± 0.002 98.8% 0.009 0.019 0.015 0.014± 0.004 96.5%

BlenderLLMs (Ours)
Iteration 1 0.784 0.689 0.517 0.663± 0.111 5.8% 0.673 0.569 0.444 0.562± 0.094 6.0%
Iteration 2 0.822 0.743 0.597 0.721± 0.093 5.2% 0.689 0.608 0.473 0.590± 0.089 6.0%
Iteration 3 0.846 0.760 0.638 0.748 ± 0.085 3.4% 0.739 0.675 0.578 0.664 ± 0.066 3.5%
Iteration 4 0.846 0.767 0.626 0.747± 0.091 3.2% 0.717 0.614 0.493 0.608± 0.092 5.0%

Table 2: Quantitative Assessment for Instruction-to-Script Generation. This table compares the performance of
12 LLMs and BlenderLLM in assisting CAD script generation on CADBench across three dimensions: Attr., Spat.,
and Inst.. Additionally, Avg. and Esyntax are provided. A higher score indicates better performance in a given
dimension. The results show that BlenderLLM outperforms all other models and effectively handles the task of
Instruction-to-CAD script generation.

GPUs with 80GB of memory, with a training time
of approximately 21 minutes per SFT round. The
batch size, gradient steps, learning rate, epochs,
and warmup ratio are set to 1, 2, 1× 10−5, 1, and
0.1, respectively. The validation dataset constitutes
10% of the total dataset, with a batch size of 1 and
50 evaluation steps.

5.2 Baselines

To evaluate the performance of BlenderLLM, we
compare it against several existing models us-
ing a one-shot context approach for all com-
parisons. The models used for comparison in-
clude:o1-Preview (Team, 2024), GPT-4 turbo
(OpenAI, 2023), Claude3.5-sonnet (Anthropic,
2024), GPT-4o (OpenAI, 2024), BlenderGPT
(Aarya, 2023), Gemini-1.5-pro (Gemini Team,
2024), DeepSeek-V2.5 (Liu et al., 2024), Qwen2.5-
Coder-7B-Instruct (Hui et al., 2024), Qwen-
2.5 (Hui et al., 2024), LLaMA3.1-8B-Instruct
(Touvron et al., 2023), Mistral-7B-Instruct-V0.3
(Jiang et al., 2023), and CodeLLaMa-7B-Instruct
(Rozière et al., 2024). Details about these models
can be found in Appendix H.

5.3 Main Results

Overall Performance As shown in Table 2,
BlenderLLM achieves SOTA performance across
all dimensions in both CADBench-Sim and

CADBench-Wild, significantly outperforming the
second-place model, o1-Preview. A visual compar-
ison of the performance of different models across
the dimensions of attr., spat., and inst. is provided
in Appendix J, where it is evident that Blender-
LLM demonstrates substantial improvements in all
three dimensions. Furthermore, the comparison
shows that BlenderLLM not only adheres more
closely to the specified requirements but also offers
more reasonable solutions for unmentioned aspects.
Its strong performance on CADBench-Wild further
highlights BlenderLLM’s exceptional generaliza-
tion capabilities.

Syntax Error Rate As BlenderLLM fine-tuned
with high-quality specialized data, its syntax error
rate is significantly lower than that of other models.
Moreover, the syntax error rate on CADBench-Wild
has barely increased, further demonstrating that
BlenderLLM has achieved a high level of profi-
ciency in understanding CAD script syntax.

Self-improvement As shown in the examples
in Table 3, during the Self-improvement process,
BlenderLLM evolves from initially having limited
ability to follow instructions, to gradually under-
standing the instructions and developing spatial rea-
soning capabilities, ultimately succeeding in mod-
eling the specified object.

7

Instruction: Create a desktop monitor. It should
have a 24-inch screen with a thin bezel.

Iteration Images

Base Model

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Table 3: Visual Process of Self-improvement

5.4 Analysis and Discussion

The experimental results demonstrate that Blender-
LLM exhibits significant advantages in attr., spat.,
inst., and Esyntax. Combining the performance
of different models on sub-dimensions, as shown
in Appendix I, with the comparison of visualiza-
tion results presented in Appendix J and Table C,
these achievements can be attributed to two key
factors. First, the BlendNet enables BlenderLLM
to learn a variety of instructions. Also, This com-
prehensive training helped BlenderLLM develop
a deeper understanding of the rationality of object
attributes, such as the relative size and position
of components, as well as the matching of colors
and materials. Second, the Self-improvement train-
ing strategy allowed BlenderLLM to continuously
learn and adapt, progressively enhancing its spatial
reasoning capabilities over iteration.

6 Ablation

To demonstrate that Self-improvement Training
strategy is more effective than conventional iter-
ative training strategy with similar computational
resources, we conducte two comparative experi-
ments:

Methods CADBench-Sim CADBench-Wild
Avg. Esyntax Avg. Esyntax

Epoch Accumulation Training
+ 1 epoch 0.663± 0.111 5.8% 0.562± 0.094 6.0%
+ 2 epoch 0.685± 0.105 5.6% 0.578± 0.086 5.0%
+ 3 epoch 0.721± 0.099 3.6% 0.568± 0.089 6.5%
+ 4 epoch 0.705± 0.103 3.2% 0.595± 0.082 6.0%

Predefined Incremental Training
+ 1 increment 0.663± 0.111 5.8% 0.562± 0.094 6.0%
+ 2 increment 0.716± 0.098 4.8% 0.559± 0.088 5.5%
+ 3 increment 0.722± 0.099 3.6% 0.593± 0.080 6.5%
+ 4 increment 0.721± 0.098 3.8% 0.606± 0.087 5.0%

Self-improvement Training
+ 1 iteration 0.663± 0.111 5.8% 0.562± 0.094 6.0%
+ 2 iteration 0.721± 0.093 5.2% 0.590± 0.089 6.0%
+ 3 iteration 0.748 ± 0.085 3.4% 0.664 ± 0.066 3.5%
+ 4 iteration 0.747± 0.091 3.2% 0.608± 0.092 5.0%

Table 4: Comparison between different SFT strategy.

Epoch Accumulation Training We fine-tune
Qwen2.5-Coder-7B-Instruct, using the fixed
dataset BlendNet-Human. The training process be-
gin with one epoch and is incrementally extended
by adding an additional epoch in each iteration.

Predefined Incremental Train-
ing We fine-tuned the base model,
Qwen2.5-Coder-7B-Instruct, using a pre-
defined incremental strategy. The process began
with the initial dataset, BlendNet-Human. In
subsequent iterations, 2k unused examples from
BlendNet-GPT were added for further fine-tuning.

Table 4 demonstrates that, after the same number
of training iterations, models trained using the Self-
improvement Training strategy consistently outper-
form those trained with the other two approaches
on both CADBench-Sim and CADBench-Wild. Fur-
thermore, Appendix K presents the visualization
results of the three different training strategies. It
can be observed that, compared to the other two
strategies, the Self-improvement Training strategy
exhibits superior performance in both instruction-
following and spatial reasoning capabilities.

7 Conclusion

In this paper, we propose a comprehensive frame-
work that spans from data construction to self-
improvement-based SFT model training and bench-
mark testing. Through this framework, Blender-
LLM, has demonstrated superior performance
across various metrics compared to mainstream
models. Our results highlight the effectiveness
of combining Self-improvement with high-quality
dataset, leading to significant advancements in
model capabilities.

8

Limitation

This study has several limitations. First, the data
construction and model training primarily focused
on basic CAD modeling aspects and did not address
more intricate elements, such as material properties,
surface treatments, or internal complexity. These
factors could influence the model’s performance
in handling more advanced CAD tasks. Second,
our work focused solely on generating CAD scripts
from user instructions, without exploring the poten-
tial for direct CAD model generation or the integra-
tion of multimodal inputs, such as combining user
instructions with images. Future research could
investigate these avenues to enhance model versa-
tility. Lastly, the model has not been trained for
multi-turn dialogues, limiting its ability to engage
in more complex, interactive conversations. These
limitations highlight key areas for future improve-
ment and expansion of the model’s capabilities.

Ethics Statement

This research involves the development and evalua-
tion of a novel dataset and methodology for apply-
ing Large Language Models (LLMs) to Computer-
Aided Design (CAD). The study does not involve
human subjects, nor does it utilize any personally
identifiable information. The research adhere to
ethical guidelines regarding data privacy and intel-
lectual property. The authors declare no conflicts
of interest related to this work. The datasets and
models we provide follow the CC-BY 4.0 License.

References
Flip Phillips Aarya. 2023. BlenderGPT. https://

github.com/gd3kr/BlenderGPT.git. Accessed:
2024-12-01.

Anthropic. 2024. Claude 3.5 Sonnet. Anthropic Techni-
cal Reports.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
https://arxiv.org/abs/2005.14165.

Siva R Chavali, Chiradeep Sen, Gregory M Mocko,
and Joshua D Summers. 2008. Using rule based
design in engineer to order industry: an SME case
study. Computer-Aided Design and Applications,
5(1-4):178–193.

Manuel Contero, David Pérez-López, Pedro Company,
and Jorge D. Camba. 2023. A quantitative analysis
of parametric cad model complexity and its relation-
ship to perceived modeling complexity. Advanced
Engineering Informatics, 56:101970.

Wentao Ge, Shunian Chen, Guiming Hardy Chen, Zhi-
hong Chen, Junying Chen, Shuo Yan, Chenghao
Zhu, Ziyue Lin, Wenya Xie, Xinyi Zhang, Yichen
Chai, Xiaoyu Liu, Nuo Chen, Dingjie Song, Xidong
Wang, Anningzhe Gao, Zhiyi Zhang, Jianquan Li,
Xiang Wan, and Benyou Wang. 2024. Mllm-bench:
Evaluating multimodal llms with per-sample criteria.
Preprint, arXiv:2311.13951.

Google Gemini Team. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context. Gemini Technical Reports.

David Heesom and Lamine Mahdjoubi. 2004. Trends
of 4D CAD applications for construction planning.
Construction management and economics, 22(2):171–
182.

Md Hosen and Shahed Ahmmed. 2019. Mastering 3d
modeling in blender: From novice to pro. ABC Re-
search Alert, 7:169–180.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-Coder Technical Re-
port. arXiv preprint arXiv:2409.12186.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego

9

https://github.com/gd3kr/BlenderGPT.git
https://github.com/gd3kr/BlenderGPT.git
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/pdf/2005.14165
https://www.researchgate.net/publication/251043034_Using_Rule_Based_Design_in_Engineer_to_Order_Industry_An_SME_Case_Study
https://www.researchgate.net/publication/251043034_Using_Rule_Based_Design_in_Engineer_to_Order_Industry_An_SME_Case_Study
https://www.researchgate.net/publication/251043034_Using_Rule_Based_Design_in_Engineer_to_Order_Industry_An_SME_Case_Study
https://doi.org/10.1016/j.aei.2023.101970
https://doi.org/10.1016/j.aei.2023.101970
https://doi.org/10.1016/j.aei.2023.101970
https://arxiv.org/abs/2311.13951
https://arxiv.org/abs/2311.13951
https://arxiv.org/pdf/2403.05530
https://arxiv.org/pdf/2403.05530
https://arxiv.org/pdf/2403.05530
https://www.researchgate.net/publication/24077714_Trends_of_4D_CAD_applications_for_construction_planning
https://www.researchgate.net/publication/24077714_Trends_of_4D_CAD_applications_for_construction_planning
https://doi.org/10.18034/ra.v7i3.654
https://doi.org/10.18034/ra.v7i3.654
https://arxiv.org/abs/2409.12186v1
https://arxiv.org/abs/2409.12186v1

de las Casas, Florian Bressand, Guillaume Lam-
ple Gianna Lengyel, Lucile Saulnier, Lélio Renard
Lavaud, Pierre Stock Marie-Anne Lachaux, Teven Le
Scao, Thibaut Lavril, Thomas Wang, and William
El Sayed Timothée Lacroix. 2023. Mixtral of Ex-
perts. arXiv preprint arXiv:2401.04088.

Timo Kapsalis. 2024. Cadgpt: Harnessing natu-
ral language processing for 3d modelling to en-
hance computer-aided design workflows. Preprint,
arXiv:2401.05476.

Alexander Kreis, Mario Hirz, and Patrick Rossbacher.
2020. CAD-automation in automotive development–
potentials, limits and challenges. Comput.-Aided Des.
Appl, 18:849–863.

Jun Li, Ryan Finnigan, Tom Fuhlbrigge, and Yixin
Liu. 2020. Sketch2CAD: Sequential CAD model-
ing by sketching in context. Computer-Aided Design,
125:102831.

Aixin Liu, Bei Feng, and Bin Wang et al. 2024.
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Model. arXiv preprint
arXiv:2405.04434.

Isabel Briggs Myers. 1985. A guide to the development
and use of the Myers-Briggs type indicator: Manual.
Consulting Psychologists Press.

OpenAI. 2023. GPT-4 Technical Report. OpenAI Tech-
nical Reports.

OpenAI. 2024. GPT-4o System Card. OpenAI Techni-
cal Reports.

World Intellectual Property Organization. 2013. IN-
TERNATIONAL CLASSIFICATION FOR INDUS-
TRIAL DESIGNS(LOCARNO CLASSIFICATION).
ISBN 978-92-805-2323-2.

Helmut Pottmann, Stefan Leopoldseder, Michael Hofer,
Tibor Steiner, and Wenping Wang. 2005. Industrial
geometry: recent advances and applications in CAD.
Computer-Aided Design, 37(7):751–766.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv preprint arXiv:1910.10683.

Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu,
David Z Pan, Marilyn Wolf, and Jörg Henkel. 2021.
MLCAD: A survey of research in machine learn-
ing for CAD keynote paper. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 41(10):3162–3181.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,

Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. arXiv preprint arXiv:2308.12950.

Ceri M. Sims. 2017. Do the big-five personality traits
predict empathic listening and assertive communica-
tion? International Journal of Listening, 31(3):163–
188.

I Susic, M Travar, and M Susic. 2017. The application
of CAD / CAM technology in Dentistry. In IOP Con-
ference Series: Materials Science and Engineering,
volume 200, page 012020. IOP Publishing.

O1 Team. 2024. Learning to reason with llms.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Vili Tuori. 2022. Advantages of Photogrammetry in
Creating Photorealistic 3D Assets Using Blender.
Theseus.

Yizhong Wang et al. 2022. Self-Instruct: Aligning
Language Models with Self-Generated Instructions.
arXiv preprint arXiv:2212.10560.

Sifan Wu, Amir Khasahmadi, Mor Katz, Pradeep Ku-
mar Jayaraman, Yewen Pu, Karl Willis, and Bang
Liu. 2023. CAD-LLM: Large Language Model for
CAD Generation. Conference on Neural Information
Processing Systems 2023.

Yuan Zeqing, Lan Haoxuan, Zou Qiang, and Zhao
Junbo. 2024. 3D-PREMISE: CAN LARGE LAN-
GUAGE MODELS GENERATE 3D SHAPES WITH
SHARP FEATURES AND PARAMETRIC CON-
TROL? arXiv:2401.06437.

Haoran Zhang, Yue Wang, Wei Wang, Hao Dong,
Yongjing Liu, and Pan Pan. 2024. CadVLM:
Bridging Language and Vision in the Generation
of Parametric CAD Sketches. arXiv preprint
arXiv:2409.17457.

10

https://arxiv.org/pdf/2401.04088
https://arxiv.org/pdf/2401.04088
https://arxiv.org/abs/2401.05476
https://arxiv.org/abs/2401.05476
https://arxiv.org/abs/2401.05476
https://cad-journal.net/files/vol_18/CAD_18(4)_2021_849-863.pdf
https://cad-journal.net/files/vol_18/CAD_18(4)_2021_849-863.pdf
https://arxiv.org/pdf/2009.04927
https://arxiv.org/pdf/2009.04927
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://archive.org/details/manualguidetodev0000myer
https://archive.org/details/manualguidetodev0000myer
https://arxiv.org/pdf/2303.08774
https://cdn.openai.com/gpt-4o-system-card.pdf
https://www.wipo.int/export/sites/www/classifications/locarno/en/pdf/LOC_10E_Final_16MAY2013.pdf
https://www.wipo.int/export/sites/www/classifications/locarno/en/pdf/LOC_10E_Final_16MAY2013.pdf
https://www.wipo.int/export/sites/www/classifications/locarno/en/pdf/LOC_10E_Final_16MAY2013.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0010448504001988
https://www.sciencedirect.com/science/article/abs/pii/S0010448504001988
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://ieeexplore.ieee.org/document/9598835
https://ieeexplore.ieee.org/document/9598835
https://arxiv.org/html/2308.12950
https://arxiv.org/html/2308.12950
https://doi.org/10.1080/10904018.2016.1202770
https://doi.org/10.1080/10904018.2016.1202770
https://doi.org/10.1080/10904018.2016.1202770
https://iopscience.iop.org/article/10.1088/1757-899X/200/1/012020
https://iopscience.iop.org/article/10.1088/1757-899X/200/1/012020
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2302.13971
https://www.theseus.fi/bitstream/handle/10024/755382/Thesis_Tuori_Vili.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/755382/Thesis_Tuori_Vili.pdf?sequence=2
https://arxiv.org/pdf/2212.10560
https://arxiv.org/pdf/2212.10560
https://www.research.autodesk.com/app/uploads/2024/05/cadllm_neurips2023_workshop-1.pdf
https://www.research.autodesk.com/app/uploads/2024/05/cadllm_neurips2023_workshop-1.pdf
https://arxiv.org/pdf/2401.06437
https://arxiv.org/pdf/2401.06437
https://arxiv.org/pdf/2401.06437
https://arxiv.org/pdf/2401.06437
https://arxiv.org/abs/2409.17457
https://arxiv.org/abs/2409.17457
https://arxiv.org/abs/2409.17457

A Comparison of BlenderLLM and
Recent works

The comparison of BlenderLLM and recent works
is shown in Table 5.

B Data Construction

B.1 Categories, Instruction Types and
Instruction Length

B.1.1 Categories
We based on the Locarno Classification System
to generate our own classification method and
concluded all objects into 16 categories C =
{Tech,Music, . . . ,Home}, with their names listed
below:

• Tech: Recording, telecommunication, or data
processing equipment

• Music: Musical instruments

• Animal: Articles for the care and handling of
animals

• Furn: Furnishing

• Transport: Means of transport or hoisting

• Office: Stationery and office equipment,
artists’ and teaching materials

• Food: Foodstuffs

• MedLab: Medical and laboratory equipment

• Fashion: Articles of clothing and haberdash-
ery

• Graphics: Graphic symbols, logos, surface
patterns, ornamentation, arrangement of inte-
riors and exteriors

• Recre: Recreational goods (Games, toys, tents,
and sports goods)

• Tools: Tools and hardware

• Travel: Travel goods, cases, parasols, and per-
sonal belongings, not elsewhere specified

• Power: Electrical systems (Equipment for
production, distribution, or transformation of
electricity)

• Cuisine: Culinary machines (Machines and
appliances for preparing food or drink, not
elsewhere specified)

• Home: Household goods, not elsewhere speci-
fied

B.1.2 Instruction Types
We notice the difference between styles of prompt-
ing. In order to make input data more di-
verse, we specified them into 8 types, denoted
as T = {Verbal,Look, . . . ,Design}, with their
names listed below:

• Verbal: Verbal Question
Direct and conversational requests for creating
dynamic or specific action images, focusing
on movement and behavior.

• Look: Outlook Question
Focuses on the physical appearance of objects,
emphasizing visual attributes like color and
shape.

• Use: Specific Usage Question
Emphasizes the practicality or functionality
of objects, highlighting how they can be used
or their intended purpose.

• Deco: Decoration Question
Concentrates on the aesthetic or decorative
aspects of objects, underlining their decorative
value and appearance.

• Feel: Feeling Question
Involves sensory experiences or the tactile
quality of objects, aiming to capture the feel
or sensory impression they convey.

• Comp: Comparing Question
Entails making distinctions based on compari-
son, often with a focus on historical or time-
specific characteristics to capture a specific
style.

• Feat: Feature Question
Centers around exploring and describing spe-
cific features of objects, requiring creativity
based on given characteristics.

• Design: Design Question
Revolves around creative construction or con-
ceptualization based on specific shapes or
ideas, emphasizing innovative design solu-
tions.

B.1.3 Instruction Length
We set the length of the instruction to enhance the
variety. We place instruction into 5 classes regard-
ing to their words count, as L = {VS, S, . . . ,E}.

11

Models Open Source Self-improvement Methodology LM Backbone Size Task
BlenderGPT (Aarya, 2023) ✗ ✗ Prompt Engineering GPT-4 (OpenAI, 2023) / Text-to-Code
CADGPT (Kapsalis, 2024) ✗ ✗ Prompt Engineering GPT-4 (OpenAI, 2023) / Text-to-API
CAD-LLM (Wu et al., 2023) ✗ ✗ Training T5 (Raffel et al., 2019) 770M CAD-to-CAD
CADVLM (Zhang et al., 2024) ✗ ✗ Training / / Multimodal-to-CAD
BlenderLLM ✓ ✓ Training Qwen2.5-Coder (Hui et al., 2024) 7B Text-to-Code

Table 5: Comparison of BlenderLLM and Recent Works

• VS: Very Short

• S: Short

• M: Medium

• L: Long

• E: Extended

B.2 Instruction Generation Process
the generation process for instructions is shown in
Algorithm 1

Algorithm 1 Instruction Generation Process
1: Input:
2: I: Set of instructions
3: Iprev: Set of previous instructions
4: Iseed: Set of seed instructions
5: C: Set of categories
6: T : Set of types
7: L: Set of lengths
8: Dold: Dataset of old instructions
9: threshold: Threshold for name counts

10: S: Similarity score function
11: Output:
12: Inew: Set of new instructions
13: Cnew: Set of new categories
14: Tnew: Set of new types
15: Lnew: Set of new lengths
16: Nnormalized: Normalized names set
17: Nthrowed: Filtered names (names to avoid)
18: Nremaining: Remaining names
19: Iterative Generation:
20: Inew ← {i ∈ I | S(i, j) < 0.8, ∀j ∈ Iprev ∪ Iseed}
21: |Inew| ← 10
22: Constraints:
23: Cnew ← {Ci | Ci ∈ C, |Cnew| = 16}
24: Tnew ← {Ti | Ti ∈ T, |Tnew| = 8}
25: Lnew ← {Li | Li ∈ L, |Lnew| = 5}
26: Normalization and Filtering:
27: 1. Normalized Names Set:
28: Nnormalized ← {normalize(dname) | d ∈ Dold, dcategory ∈

Cnew}
29: 2. Name Counts:
30: Ncounts ← Counter (normalize(dname) | d ∈ Dold)
31: 3. Filtered Names (Names to Avoid):
32: Nthrowed ← {n | n ∈ Nnormalized, Ncounts[n] > threshold}
33: Nremaining ← Nnormalized −Nthrowed
34: Output:
35: Inew, Cnew, Tnew, Lnew, Nnormalized, Nthrowed, Nremaining

B.3 Validation
B.4 Script Generation
The process for script generation is shown in Fig-
ure 5.

GPT
Human Pass Fail

Pass 21.61% 7.20%
Fail 3.13% 68.06%

Table 6: Cross Validation

B.5 Validation Process
The process for validation is shown in Figure 6.

B.6 Cross Validation
Table 6 shows the details about the cross validation
result. The proportion of samples where humans
and models consistently judge passed is 21.6%, the
proportion of samples where humans and models
consistently judge not passed is 68.1%, and the pro-
portion of samples where human and model judg-
ments differ is only 10.3%, which demonstrates
a high degree of consistency between human and
model assessments. The instruction for human val-
idation can be found in Appendix G.1.

B.7 The Complexity of BlendNet
we define three key metrics to quantify the com-
plexity of BlendNet:

• Unit Number: This metric represents the
number of basic shapes within the 3D Model.
It serves as an indicator of geometric com-
plexity, where higher values imply a greater
number of components and higher structural
complexity.

• Parameter Density: This metric calculates
the average complexity per shape, defined as:

Parameter Density =
Parameter #

Unit#
(1)

A higher parameter density indicates that each
shape is more parameterized, implying greater
irregularity and higher computational com-
plexity. This value reflects how intricately the
shapes are defined and how complex the rela-
tionships between the parameters are within
the 3D model.

• Entropy: Entropy measures the spatial diver-
sity of the shapes in the 3D space. It is defined

12

Task Description: You are tasked with modeling 3D objects using the Python API for Blender (bpy). You will receive an
[Instruction], which contains the object that you will model. Please provide a Blender bpy script according to the [Instruction].
For example: /n[Instruction]: … /nFor the task, your response can be: <script begin> … <script end>
Here are the common Problems: /n1. Incorrect orientation: ... /n2. ...

 Understood! If you provide the [Instruction], I’ll create a Blender bpy script accordingly.

AI Evaluator
 [Instruction]: The chair features four cylindrical legs in a deep mahogany color. The seat is circular in a forest green color. Both
 the backrest and armrests are in the same deep mahogany hue.

User
Tasks is noticed and instruction is well received, answers generated below:
<script begin> /nimport bpy /n# Step 1: Clear the Scene /nbpy.ops.object.select_all(action='DESELECT’) /n... /n<script end>

AI Evaluator

User

Figure 5: Process for Script Generation. We carefully designed the prompt to maximize the responsiveness and
effectiveness of GPT-4o, ensuring that it generates high-quality and contextually accurate CAD scripts.

AI Evaluator

Validation

User

You are a professional evaluation expert. Based on the user's instruction, bpy script and the four images from different angles, you
need to determine whether the 3D model in the images matches the user's instruction. Please note that the images here are
rendered in Blender by executing the bpy script. You need to check whether the color and size parameters set in the bpy script
match those in the instruction. For other requirements, you should determine if they align with the instruction based on the
images. You only need to respond with "Pass" (if all the requirements of the instruction are met) or "Fail" (if there are any
discrepancies).

Instruction: Honey, can you help me draw a table? And there is a yellow book and a green mug on it.

Bpy Script :

```python
import bpy  
# Function: Add Cube
 ...
# Add tabletop
table_top_size = (2.0, 1.0, 0.1)  # Length, Width, Height
add_cube(location=(0, 0, 1.0), size=table_top_size, color=(0.6, 0.3, 0.1, 1), material_name="TableTopMaterial")
# Add tabletop
table_top_size = (2.0, 1.0, 0.1)  # Length, Width, Height
add_cube(location=(0, 0, 1.0), size=table_top_size, color=(0.6, 0.3, 0.1, 1), material_name="TableTopMaterial")
# Add table legs
leg_size = (0.1, 0.1, 1.0)  # Length, Width, Height
leg_positions = [(0.9, 0.45, 0.5), (-0.9, 0.45, 0.5), (0.9, -0.45, 0.5), (-0.9, -0.45, 0.5)]
for pos in leg_positions:
    add_cube(location=pos, size=leg_size, color=(0.5, 0.25, 0.1, 1), material_name="LegMaterial")
# Add book (yellow)
book_size = (0.05, 0.3, 0.5)  # Length, Width, Height
add_cube(location=(0.3, 0, 1.075), size=book_size, color=(1, 1, 0, 1), material_name="BookMaterial")
```

Images: Please refer to the attachment.

Fail.

A
ttachm

ent

Figure 6: Validation Process

13

as:
H = −

∑
pi log(pi) (2)

where pi is the probability density in 3D vox-
els. Higher entropy values indicate greater
spatial diversity, which implies more irregular
and unpredictable configurations. This metric
helps capture the distribution and variation of
shapes across the 3D space, with larger values
corresponding to more complex and diverse
spatial arrangements.

The distribution of BlendNet-Human,
BlendNet-GPT, and BlendNet across these
three metrics is shown in Figure 7.

B.8 Samples of BlendNet

The Samples of BlendNet is shown in Table 7.

C Self-improvement Process

C.1 Self-improvement Algorithm

The algorithm for the Self-improvement process is
referenced in Algorithm 2.

C.2 Cascade Filter

The classification accuracy of cascade filter is
shown in Table 8. Result shows that cascade filter
outperforms both single filter.

D Benchmark

D.1 Dimensions for Criteria

D.1.1 Object Attributes (Attr.)
Definition: This section focuses on evaluating the
visual and physical properties of objects, such as
shape, color, size, proportion and material charac-
teristics.

• Shape: Shape Accuracy
Ensure that the objects’ shapes align with the
instructions, including basic geometries like
cubes, spheres, and cylinders.

• Color: Color Representation
Confirm that the objects’ colors precisely
match the instructions, including shades, gra-
dients, and lighting effects.

• Size: Size Accuracy
Check that objects’ absolute sizes, such as
height, width, and depth, are consistent with
the instructions.

• Proportion: Proportion Accuracy
Ensure the size relationships between differ-
ent parts of the objects are correct relative to
each other.

• Texture: Texture and Surface Detail
Verify that surface materials like metal, wood,
or glass are accurately represented through
texture, gloss, or transparency.

D.1.2 Spatial Understanding and Structure
(Spat.)

Definition: This section evaluates how well the
model comprehends and represents the position,
relationships, and structure of objects within 3D
space.

• Space: Spatial Awareness
Assess whether the objects’ positions and rel-
ative relationships within the 3D coordinate
system are accurate and logical.

• Contact: Object Contact and Distance
Verify if the relative distances between objects
are reasonable, and whether physical interac-
tions like contact, stacking, or collision are
handled correctly.

D.1.3 User Instruction Understanding and
Execution (Inst.)

Definition: This dimension evaluates how accu-
rately the model interprets and executes the user’s
instructions.

• Execute: Execution Accuracy
Ensure that the objects fully conform to user
instructions, including shape, color, size, and
material, with no deviations.

D.2 Example for Criteria
Instruction: The chair features four cylindrical
legs in a deep mahogany color. The seat is circu-
lar in a forest green color. Both the backrest and
armrests are in the same deep mahogany hue. The
height of the legs is 35cm. The height of the arm-
rests is 10cm.
For this instruction, the Evaluation Criteria is:

• Object Attributes:

– Shape accuracy:

* The object in the images is a chair.

* The chair has four cylindrical legs.

* The seat is circular.

14

Instruction Images Unit
Number

Parameter
Density Entropy

Design an eraser. 1 9.00 2.08

Let’s create a birthday cake
with three layers. The
bottom layer should be

chocolate, the middle layer
vanilla, and the top layer

red velvet. Each layer
should be separated by a
thick layer of buttercream
frosting. Add a decorative
border of frosting around
the top edge, and place

colorful sprinkles all over
the surface. Finally, add a

Happy Birthday message on
top.

107 0.50 3.66

How does solving a puzzle
cube make you feel? Can

you create a 3D model of a
standard 3x3 puzzle cube?

27 1.41 3.99

Compare the appearance of
a club sandwich and a BLT

sandwich. Create both
sandwiches with the classic
ingredients stacked between

slices of bread.

2 13.50 4.02

Design a 3D model of a
smartphone with a screen
and a single button on the

front.

3 7.67 1.34

Could you design a 3D
model of a transformer

coil? It should be
cylindrical with multiple

copper windings.

11 1.37 6.31

Table 7: Samples of BlendNet

Filters Cascade Filter Coarse Filter Fine Filter
Precision 81.8% 61.9% 73.3%

Table 8: Precision of different Filters. Data deemed ac-
ceptable by the Coarse Filter is subsequently processed
by the Fine Filter for further verification. This cascaded
approach achieves both cost savings and high accuracy.

* The backrest is rectangular.

* The armrests are also cylindrical.

– Color representation:

* The color of the legs is deep ma-
hogany.

* The seat color is forest green.

* The backrest color is deep mahogany.

* The color of the armrests is deep ma-
hogany.

– Size:

* The height of the legs is 35 cm.

* The height of the armrests is 10 cm.

15

Algorithm 2 Self-improvement Process
1: Definitions:
2: i: Iteration number ▷ Counter for optimization iterations, starting from 1
3: Mi: Model obtained at the i-th iteration ▷ e.g., M1 is the first iteration model
4: Mfinal: Optimal model ▷ The final model with the best evaluation score
5: Ij : Instruction for the j-th task ▷ j-th Task description in natural language
6: Sj : Script generated for Ij ▷ generated script based on Ij
7: Rj : Rendered images for Sj ▷ Images by rendering Sj

8: Pj : Data pair (Ij , Rj) ▷ Combination of instruction and rendered images
9: CF : Cascade filter for data pair evaluation ▷ Filters data pairs to ensure quality

10: Ti: Training dataset at iteration i ▷ Dataset used to train Mi

11: Lossi: Evaluation score for model Mi on validation Set ▷ Performance on validation Set
12: Initialization:
13: i← 1, M0 ← BaseBlenderLLM, S0 ← 0
14: while true do ▷ Main iterative process
15: Ti ← ∅ ▷ Initialize training data for iteration i
16: while true do
17: Sj ∼Mi−1(Ij) ▷ Generate script Sj from Mi−1 using Ij
18: Rj = Render(Sj) ▷ Render images Rj using script Sj

19: Pj = (Ij , Rj)

20: CF (Pj) =

{
Match, if Pj satisfies filter criteria
No Match, otherwise

▷ Evaluate the data pair using cascade filter

21: if CF (Pj) = Match then
22: Ti ← Ti ∪ {Pj} ▷ Add valid pair to training dataset
23: else
24: Discard Pj ▷ Ignore invalid data pairs
25: end if
26: if |Ti| ≥ 2000 then
27: Break ▷ Stop collecting data if threshold is met
28: end if
29: end while
30: Mi = Train(Mi−1, Ti) ▷ Train model Mi using Mi−1 and Ti

31: Lossi = Evaluate(Mi,Validation Set) ▷ Evaluate Mi on Validation Set
32: if Lossi > Lossi−1 then
33: Mfinal ←Mi−1 ▷ Save previous model if score degrades
34: Break
35: else
36: Mi−1 ←Mi ▷ Update base model for next iteration
37: end if
38: i← i+ 1 ▷ Increment iteration counter
39: end while
40: Output: Mfinal

– Proportion:

* The seat is proportionate to the legs.

* The backrest is at a reasonable height
relative to the seat.

– Texture and surface detail:

* The legs have a smooth wooden tex-
ture.

* The seat may have a fabric texture
suitable for upholstery.

• Spatial Understanding and Structure:

– Three-dimensional spatial awareness:

* The legs are positioned correctly for
stability.

* The seat is properly supported by the
legs.

* The backrest is properly supported
by the seat.

* The two armrests are symmetrical.
– Object distance and contact:

* The legs do not overlap with the seat.

* There is no gap between the seat and
the legs.

* The backrest connects with the seat
at the edge.

* The armrests are fixed to the backrest
and seat.

• User Instruction Understanding and Exe-
cution:

– Instruction execution accuracy:

* All specified attributes are accurately
represented.

16

[0, 3) [3, 6) [6, 9) [9, 12) [12, 15) [15,)
Range

0%

10%

20%

30%

40%

Pr
op

or
tio

n
Unit Numbers

BlendNetHuman
BlendNetGPT
BlendNet

[0, 2) [2, 4) [4, 6) [6, 8) [8, 10) [10, 12) [12,)
Range

0%

5%

10%

15%

20%

25%

Pr
op

or
tio

n

Parameter Density
BlendNetHuman
BlendNetGPT
BlendNet

[0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6,)
Range

0%

5%

10%

15%

20%

25%

30%

35%

Pr
op

or
tio

n

Entropy
BlendNetHuman
BlendNetGPT
BlendNet

Figure 7: The complexity distribution of BlendNet

* There are no deviations from the in-
structions.

D.3 Average Number of Criteria across
Dimensions

The average number of criteria of each sample
across dimensions is shown in Figure 8.

Shape Color Size Proportion Texture Space Contact Execute
Sub-dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

N
um

be
r

CADBench-Sim
CADBench-Wild

Figure 8: Average number of criteria for each sub-
dimension.

D.4 Evaluation Metrics

Sub-dimension Scores The average score for
sub-dimension j within dimension k, denoted as
SubDimScorek,j , is calculated as follows. Here,
Nkj represents the total number of criteria in sub-
dimension j, and Skji is the score for the i-th crite-
rion:

SubDimScorek,j =
1

Nkj

Nkj∑
i=1

Skji (3)

Dimension Scores The average score for a spe-
cific dimension k, denoted as DimScorek, is cal-
culated using Equation 4. In this equation, Nk

represents the number of sub-dimensions within
dimension k:

DimScorek =
1

Nk

Nk∑
j=1

SubDimScorek,j (4)

Overall Scores The overall score for a model,
denoted as Avg., is calculated using Equation 5. In
this equation, k represents the number of dimen-
sions:

Avg. =
1

k

k∑
l=1

DimScorel (5)

Syntax Error Rate In addition to evaluating the
generation quality, we also calculated the syntax
error rate (Esyntax) of the scripts generated by the
model. The definition of a syntax error is whether
the script generated by the model can successfully
produce an image. The Esyntax is calculated using
Equation 6. In this equation, Nerror stands for the
number of samples with syntax error, Ntotal stands
for the total number of samples:

Esyntax =
Nerror

Ntotal
× 100% (6)

Standard Deviation To assess the consis-
tency of the model’s outputs, we calculate the
Standard Deviation (SD) of the scores across
k dimensions, as shown in Equation 7.

SD =

√∑k
l=1 (DimScorel −Avg.)2

k
(7)

E Benchmark Evaluation Process

For a detailed description of the scoring process,
please refer to Figure 9.

F Details of The Data Generation Pipeline

The detailed iterative generation are shown in Al-
gorithm 1. The generation prompt is showed in
Figure 5.

17

The first dimension is Shape Accuracy. In this dimension, the focus is on whether the objects' shapes align with the instructions,
including basic geometries such as cubes, spheres, and cylinders.

The testing criteria for this data include the following:
- The object in the images is a table.
- There is a book on the table.
- The book is rectangular.
- There is a mug on the table.
- The mug is cylindrical.

AI Evaluator

Image-Based Evaluation

User

You are a professional evaluation expert. Based on the user's instruction and the four images from different angles, you need to
determine whether the 3D model in the images matches the user's instruction. You will be provided with evaluation criteria for several
dimensions. Please score each criterion based on whether it is met or resonable: assign 1 point for a match, and 0 points for a
mismatch.

Instruction: Honey, can you help me draw a table? And there is a yellow book and a green mug on it.
Images: Please refer to the attachment.

 Understood! If you provide the evaluation metrics, I will assist you in rating the chair based on those dimensions.

User

The mug lacks an opening, and the book is placed incorrectly. All other criteria are satisfied. Therefore, all scores are [1, 0, 1, 1, 1].

AI Evaluator

......

......

The color settings of the objects in the code match the instructions, and the sizes and material settings of the components are
reasonable. Therefore, all scores are [1, 1, 1, 1].

User

AI Evaluator

Your task is to evaluate whether the object size, color, and material specified in the user's instructions match the corresponding
settings in the provided bpy script. If these attributes are not explicitly mentioned, you need to assess their reasonableness. For
attributes that meet the requirements or are deemed reasonable, assign a score of 1. Otherwise, assign a score of 0.

Instruction: Honey, can you help me draw a table? And there is a Yellow Book and a green mug on it.

The bpy script is:

```python
import bpy  
# Function: Add Cube
 ...
# Add tabletop
table_top_size = (2.0, 1.0, 0.1)  # Length, Width, Height
add_cube(location=(0, 0, 1.0), size=table_top_size, color=(0.6, 0.3, 0.1, 1), material_name="TableTopMaterial")
# Add tabletop
table_top_size = (2.0, 1.0, 0.1)  # Length, Width, Height
add_cube(location=(0, 0, 1.0), size=table_top_size, color=(0.6, 0.3, 0.1, 1), material_name="TableTopMaterial")
# Add table legs
leg_size = (0.1, 0.1, 1.0)  # Length, Width, Height
leg_positions = [(0.9, 0.45, 0.5), (-0.9, 0.45, 0.5), (0.9, -0.45, 0.5), (-0.9, -0.45, 0.5)]
for pos in leg_positions:
    add_cube(location=pos, size=leg_size, color=(0.5, 0.25, 0.1, 1), material_name="LegMaterial")
# Add book (yellow)
book_size = (0.05, 0.3, 0.5)  # Length, Width, Height
add_cube(location=(0.3, 0, 1.075), size=book_size, color=(1, 1, 0, 1), material_name="BookMaterial")
```

The evaluation criteria are:
- The book is yellow. The mug is green.
- The size set in the script is reasonable for the object.
- The texture and surface detail set in the script is reasonable for the object.

Script-Based Evaluation

A
ttachm

ent

Figure 9: Model Evaluation Process.

18

G Human Annotation

G.1 Annotation of BlendNet-Human

G.1.1 Objective

Evaluate the quality of <Instruction, Script,
Images> data by ensuring alignment between im-
ages, instructions, and scripts to construct the
BlendNet-Human.

G.1.2 Annotation Guidelines

• Image-Instruction Alignment: Images must
correspond to the instructions regarding com-
ponent position, proportion, and specified con-
ditions (e.g., symmetry, rotation, spatial rela-
tionships).

• Script-Instruction Alignment: Scripts
should accurately implement attributes de-
scribed in the instructions, such as colors,
sizes, materials, and other properties not visi-
ble in the images.

G.1.3 Annotation Workflow

1. Initial Review: Two annotators inde-
pendently evaluate each entry, recording
pass/fail decisions along with reasons for
any failures.

2. Discrepancy Resolution: A third annotator
resolves any disagreements between the initial
two annotators.

3. Quality Control: A QC team reviews 30%
of the data to ensure adherence to guidelines,
refining the process based on feedback.

G.1.4 Team and Results

• Annotators: 12 annotators for initial reviews
and 3 annotators for arbitration and quality
control.

• Scale: Over 10k entries were reviewed, re-
sulting in 2k entries for BlendNet-Human.

G.2 Annotation of Criteria

G.2.1 Objective

Construct the reliable Criteria for CADBech by
filtering and modifying 2.5k <Instruction,
Criteria> pairs to ensure consistency and feasi-
bility.

G.2.2 Annotation Guidelines
Instruction Filtering

• Relevance and Feasibility: Instructions must
describe feasible and logically sound tasks,
excluding ambiguous or unrealistic ones.

• Material, Surface, and Complexity Con-
straints: Instructions with multiple con-
straints for material, surface details and inter-
nal complexity should be simplified to retain
only one reasonable requirement.

• Scope Alignment: Remove instructions unre-
lated to the test dataset’s goals.

Criteria Validation

• Comprehensiveness: Criteria must cover all
dimensions and sub-dimensions.

• Specificity: Replace ambiguous terms with
measurable criteria.

• Default for Unspecified Dimensions: Add
default criteria for missing properties (e.g.,
"color palette should be harmonious").

G.2.3 Annotation Workflow
1. Initial Review: Two annotators inde-

pendently assess each <Instruction,
Criteria> pair, recording decisions and
flagging unreasonable data.

2. Discrepancy Resolution: A third annotator
resolves disagreements and finalizes the anno-
tations.

3. Quality Control: A QC team reviews 30%
of the data to ensure adherence to guidelines,
refining the process based on feedback.

G.2.4 Team and Results
• Annotators: 3 annotators for the annotation

process and 1 members in the quality control
team.

• Results: From the initial 2.5k entries, 500
high-quality <Instruction, Criteria>
pairs were curated.

G.3 Annotation of Evaluation
G.3.1 Objective
Obtain human preferences for evaluating the qual-
ity of the model’s outputs by scoring the results of
200 model responses

19

G.3.2 Scoring Guidelines
Scoring Process

• 1 point (pass) if the criterion is satisfied.

• 0 points (fail) if the criterion is not satisfied.

Scoring Criteria

1. Image-Based Evaluation By comparing
the images with the requirements in the instruction,
evaluate whether the criteria for all sub-dimensions,
except for Color, Size, Texture, and Surface Detail,
are met.

2. Script-Based Evaluation By comparing
the script with the requirements in the instruction,
evaluate whether the criteria for Color, Size, Tex-
ture and Surface Detail, are met.

3. Default Scoring for Unspecified Properties

• Assign 1 point if the script logically and har-
moniously defines the property.

• Assign 0 points if the property appears incon-
sistent or unreasonable.

G.3.3 Annotation Workflow
1. Data Assignment: Annotators are assigned

all of <Instruction, Script, Images> en-
tries (four images per entry).

2. Scoring and Justification: Annotators score
each criterion and provide explanations for
any failing scores.

3. Quality Control: A QC team reviews 30% of
the data to ensure compliance with guidelines,
refining the process based on feedback.

G.3.4 Team and Results
• Annotators: 3 scoring annotators and 1 qual-

ity control annotators.

• Results: The kappa value, calculated to re-
flect the consistency between human evalua-
tors, is 0.883.

H Baseline LLMs

Details about the baseline LLMs are shown below:

• o1-Preview (Team, 2024): O1-Preview is a
version of OpenAI’s O1 model. It provides
enhanced efficiency and accuracy for diverse
applications, delivering high-performance re-
sults with optimized capabilities.

• GPT-4 turbo (OpenAI, 2023): GPT-4 Turbo
is a version of OpenAI’s GPT-4 model. It
offers improved performance in responses for
a wide range of applications.

• Claude3.5-sonnet (Anthropic, 2024): A
model developed by Anthropic, known for
its safety and alignment features in language
generation tasks.

• GPT-4o (OpenAI, 2024):GPT-4o is a lan-
guage model developed by OpenAI that can
generate human-like text based on the input it
receives.

• BlenderGPT (Aarya, 2023): A model devel-
oped by Aarya and Flip Phillips, which allows
user to use natural language commands to con-
trol Blender. It leverages GPT-3.5 (Brown
et al., 2020) or GPT-4 (OpenAI, 2023) to gen-
erate corresponding bpy scripts based on user-
defined prompts for rendering 3D models.

• Gemini-1.5-pro (Gemini Team, 2024): Gem-
ini 1.5 is an advanced AI language model de-
veloped by Google DeepMind.

• DeepSeek-V2.5 (Liu et al., 2024): DeepSeek-
V2.5 is an advanced language model designed
for information retrieval tasks, optimized for
search accuracy and efficiency across large
datasets.

• Qwen-2.5-Coder-7B-Instruct (Hui et al.,
2024): Qwen2.5-Coder is the latest series of
Code-Specific Qwen large language models

• Qwen-2.5 (Hui et al., 2024): Qwen-2.5 is a
versatile language model that excels in natural
language understanding and generation, pro-
viding improved context comprehension and
response accuracy.

• LLaMA3 (Touvron et al., 2023): The latest
version of the LLaMA model, which has been
fine-tuned for a variety of natural language
processing tasks.

• Mistral-7B-Instruct-V0.3 (Jiang et al.,
2023): Mistral-7B-Instruct-V0.3 is a highly
scalable model known for its performance in
both text generation and comprehension tasks,
utilizing 8-layer attention mechanisms with a
7B parameter architecture for enhanced pro-
cessing.

20

• CodeLLaMa-7B-Instruct (Rozière et al.,
2024): Code Llama is a collection of pre-
trained and fine-tuned generative text models
ranging in scale from 7 billion to 34 billion
parameters.

I Performance on Sub-Dimensions

The performance of different LLMs on Sub-
Dimension is shown in Figure 10.

J Visual Performance of Different Models

The Visual Examples of the Performance of Differ-
ent Models are shown in Table 9.

K Visual Performance of Different
Training strategy

The Visual Examples of the Performance of Differ-
ent Training strategy are shown in Table 10.

L Characteristics of Annotators

The annotators involved in this study possess the
following characteristics:

• Bachelor’s degree in one of the following
fields: Computer Science, Data Science, Busi-
ness Administration, English, Music, or Bio-
logical Sciences.

• Full English instruction during their academic
education.

M AI Assistant

Some of the text has been polished and revised by
GPT-4, but the main part is completed by humans.

21

0.2
0.4

0.6
0.8

1.0

Shape

Color

Size

Proportion

Texture

Space

Contact

Execute

CADBench-Sim

0.2
0.4

0.6
0.8

1.0

Shape

Color

Size

Proportion

Texture

Space

Contact

Execute

CADBench-Wild

CodeLLaMA-7B-Instruct
BlenderGPT
DeepSeek-V2.5

BlenderLLM
Claude-3.5-Sonnet
Gemini-1.5-Pro

GPT-4-Turbo
GPT-4o
o1-Preview

Qwen2.5-Coder-7B-Instruct
Qwen2.5

LLaMA-3.1-8B-Instruct
Mistral-7B-Instruct-V0.3

Figure 10: Performance of different LLMs on Sub-Dimensions

Table 9: The Visual Examples of the Performance of Different Models

Models

Dimension

Atrr. Spat. Inst.

Instruction

Create a 3D model of a burger.
It consists of a sesame seed
bun, a beef patty, a slice of
cheese, lettuce, tomato, and

pickles.

I need better lighting on my
desk and want a functional

and stylish desk lamp, would
you be able to give me some

functional and stylish
construction?

Design a 3D model of a Celtic
knot. The knot should be

intricate, with interlocking
loops and a continuous

pattern. Ensure the design is
symmetrical and has a
traditional Celtic feel.

Images Scores Images Scores Images Scores

BlenderLLM 1.0 1.0 1.0

o1-Preview 0.8 0.4 0

GPT-4-Turbo 0.8 0.4 Syntax Error 0

Continued on next page

22

Table 9: The Visual Examples of the Performance of Different Models (Continued)

Claude-3.5-
Sonnet

Syntax Error 0 0.2 Syntax Error 0

GPT-4o 0.6 0.8 0.5

BlenderGPT 0.5 0.8 Syntax Error 0

Gemini-1.5-
Pro

0.5 0.2 Syntax Error 0

DeepSeek-
V2.5

Syntax Error 0 0.2 Syntax Error 0

Qwen2.5-
Coder-7B-

Instruct
0.2 0 Syntax Error 0

Qwen2.5 0.2 Syntax Error 0 Syntax Error 0

LLaMA-3.1-
8B-Instruct

Syntax Error 0 Syntax Error 0 Syntax Error 0

Mistral-7B-
Instruct-V0.3

Syntax Error 0 Syntax Error 0 Syntax Error 0

CodeLLaMA-
7B-Instruct

Syntax Error 0 Syntax Error 0 Syntax Error 0

23

Table 10: The Visual Examples of the Performance of Different Training strategy

Instruction: Can you help me to draw a chair? It has regular legs, a square seat and a square back
with yellow stripes.

Self-improvement Training Epoch Accumulation Training Predefined Incremental Training

24

	Introduction
	Related Work
	Computer-Aided Design (CAD)
	Large Language Models for CAD
	Blender

	Methodology
	Data Construction
	Text Module
	Image Module
	Verification Module

	Model Optimization
	Step I: Supervised Fine-tuning
	Step II: Self-improvement

	Benchmarking CAD
	Design Principles
	CADBench Construction
	Part I: CADBench-Sim
	Part II: CADBench-Wild

	Criteria
	Evaluation Protocol
	Evaluation Metrics

	Experiments
	Training Details
	Baselines
	Main Results
	Analysis and Discussion

	Ablation
	Conclusion
	Comparison of BlenderLLM and Recent works
	Data Construction
	Categories, Instruction Types and Instruction Length
	Categories
	Instruction Types
	Instruction Length

	Instruction Generation Process
	Validation
	Script Generation
	Validation Process
	Cross Validation
	The Complexity of BlendNet
	Samples of BlendNet

	Self-improvement Process
	Self-improvement Algorithm
	Cascade Filter

	Benchmark
	Dimensions for Criteria
	Object Attributes (Attr.)
	Spatial Understanding and Structure (Spat.)
	User Instruction Understanding and Execution (Inst.)

	Example for Criteria
	Average Number of Criteria across Dimensions
	Evaluation Metrics

	Benchmark Evaluation Process
	Details of The Data Generation Pipeline
	Human Annotation
	Annotation of BlendNet-Human
	Objective
	Annotation Guidelines
	Annotation Workflow
	Team and Results

	Annotation of Criteria
	Objective
	Annotation Guidelines
	Annotation Workflow
	Team and Results

	Annotation of Evaluation
	Objective
	Scoring Guidelines
	Annotation Workflow
	Team and Results

	Baseline LLMs
	Performance on Sub-Dimensions
	Visual Performance of Different Models
	Visual Performance of Different Training strategy
	Characteristics of Annotators
	AI Assistant

