
Transportation Research Part C 165 (2024) 104730

A
0

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

How did international air transport networks influence the spread of
COVID-19? A spatial and temporal modeling perspective
Chi Li a,f, Linhao Yu b, Jianfeng Mao b,c,∗, Wei Cong d, Zibin Pan a, Yuhao Du e,
Lianmin Zhang f

a School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
b School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
c Guangdong Provincial Key Laboratory of Big Data Computing, School of Science and Engineering, The Chinese University of Hong
Kong, Shenzhen, Guangdong, 518172, PR China
d Feeyo Technology Co., Ltd., No. 320 Qianshan Rd., Hefei, Anhui, PR China
e School of Management and Economics, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
f Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China

A R T I C L E I N F O

Keywords:
COVID-19
Air transport
Spatial heterogeneity
Temporal dynamics
Omicron

A B S T R A C T

The international air transport network is pivotal in the global propagation of emerging
infectious diseases. Gaining insights into the nuances of this transmission mechanism can pave
the way for more strategic and effective interventions. While previous studies have delved into
the subject, an integrated spatial and temporal modeling framework, specifically tailored to
distinct phases of COVID-19 and its variants, has yet to be fully explored. This research aims to
address this gap by exploring the spatial and temporal impacts of the air transport network on
the spread of COVID-19 and its Omicron variant. We introduce an improved effective distance
metric to assess the spatial correlation between various distance metrics and the onset of
infectious diseases in selected nations. Subsequently, we employ a network-based heterogeneous
susceptible-unreported infectious-confirmed-recovered-death (SUCRD) mathematical model to
delineate the temporal evolution of infections by country. Our findings underscore the air
transport network’s instrumental role in the pandemic’s spatial dynamics. Moreover, our model
has been validated, demonstrating robustness and reliability. Through rigorous validation and
simulation experiments, we discern the significance of the timing and intensity of interventions
in shaping the pandemic’s trajectory. Notably, while the air transport network exerts a profound
influence during the phases of both COVID-19 and Omicron, international travel restrictions
exhibit diminishing returns once the disease achieves widespread prevalence. Through com-
parative analysis and discussion, we highlight the advantages of our experimental outcomes
and methodological approach compared to previous studies. Based on our findings, we identify
six key policy implications that offer critical perspectives for aviation stakeholders. This study
illuminates the role of the air transport network in affecting the spatial accessibility and
temporal dynamics of pandemic transmission, thereby providing valuable insights for informed
policy-making in the aviation sector.
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1. Introduction

In December 2019, the emergence of a novel coronavirus, termed COVID-19 and caused by the SARS-CoV-2 coronavirus, first
ppeared in Wuhan, China. The disease expanded to 24 other countries worldwide within a few weeks (Wells et al., 2020). By
arch 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic (Organization et al., 2020). By June 2023,

here have been 690 million confirmed cases and over 6.88 million fatalities related to COVID-19. COVID-19 has developed into
prevalent pandemic in the past three years, posing a threat to global health and economies. What is worse, the new severe
micron variant has spread to more than 100 countries and territories around the world since it was first detected in South Africa

n November 2021 (Tong et al., 2022). As of now, the global aviation industry is in a recovery phase, with travel demand and various
viation markets steadily rebounding. Although there remains a gap compared to pre-pandemic levels, this presents a positive sign
f progress in the aviation sector (Sun et al., 2023a). However, in the recovery process of the aviation industry, new variants of
he virus continue to emerge. The aviation system should remain vigilant to the evolving characteristics of these new viruses (Sun
t al., 2023b; Xu et al., 2023). By examining the transmission dynamics of COVID-19, especially the characteristics of the newly
merged variants, and understanding the influence of the aviation network in this spread, the aviation sector can be better equipped
o mitigate substantial setbacks akin to those encountered during the pandemic’s initial phase, even in the face of a continually
volving epidemic landscape.

Expanding air transport networks and fast-growing air traffic demand have intensively increased international trade and tourism
cross the globe. With the evolutionary development of COVID-19, the aviation industry has become one of the hardest-hit sectors
ue to the unprecedented reduction in air passenger demand caused by travel restrictions (Sun et al., 2020). Bao et al. (2021)
xamine these effects from the perspective of network structure and explain how the worldwide air transportation network yields
n immense impact on the national and international economy and politics. From the statistics, Li (2021) reveals that the world
cheduled capacity and global air international and domestic passengers declined 50% and 60% in 2020. Ivanov (2020) employs
simulation-based approach to comprehensively analyze and predict the impact of COVID-19 on the global aviation supply chain,

ffering managerial insights. Moreover, Sun et al. (2021d) conduct a systematic survey to analyze the impact of COVID-19 on the
assenger-centric flight experience and its long-term influence on aviation.

Nevertheless, it is often ignored that the aviation sector is not only a victim of COVID-19 but also a crucial channel in the
ransmission of diseases, allowing a local pandemic to become a worldwide one (Sun et al., 2021d). Air travel is believed to
lay a pivotal role in hastening the spread of pandemics. The intrinsic connectivity of air transportation provides a conducive
etting for minor epidemic outbreaks to rapidly escalate into widespread pandemics (Colizza et al., 2006; Sun et al., 2021a). In
eneral, two analytical methods are employed to scrutinize the influence of air transport networks on pandemic dissemination,
ocusing on spatial accessibility and temporal evolution perspectives, respectively. On the one hand, to evaluate the role of transport
etwork accessibility in the spread of COVID-19, Mahmud et al. (2021) verify a strong association between the presence of
OVID-19 and the mechanism of transport networks with the application of Pearson correlation analysis. Besides, Brockmann and
elbing (2013) introduce a concept known as effective distance and they find the number of passengers is a reasonably accurate

ndicator of predicting the disease’s arrival time. Adiga et al. (2020) and Kuo and Chiu (2021) apply this method to the case
f COVID-19. However, they have not utilized the recent data containing flight suspensions or considered the impact of indirect
lights. On the other hand, spatial mobility and control measures contribute substantially to the temporal dynamics of COVID-19
preading (Kraemer et al., 2020; Lu et al., 2021). Chen et al. (2020) employ a network-based compartmental mathematical model
o evaluate the temporal influence while Hu et al. (2021) investigate how human mobility varies in response to different policies.
eanwhile, many studies have also examined the impact of different policy interventions on the spread of COVID-19 (Li et al.,

021c; Wandelt et al., 2023; Meng et al., 2023). In addition to research on the early stages of the pandemic’s spread, the impact
uring different epidemic phases (Yu and Chen, 2021) and the effects of different variants have also been taken into account (Sun
t al., 2021b; Choi et al., 2022).

However, the majority of conclusions drawn from prior research tend to be narrowly focused and seldom integrate the two
epresentative models to analyze both the spatial accessibility and temporal evolution effects. Little is also known about how the
iming, intensity, and duration of travel restrictions and control measures affect the spread of the pandemic. Moreover, most of the
esearch is independent of the specifics of COVID-19, which is emphasized in Sun et al. (2021d), and hardly involves the impact of
he typical variant Omicron. Overall, by integrating the aforementioned two types of analytical models and addressing the stated
imitations, we are dedicated to offering a spatial and temporal modeling framework to assess the role of aviation networks in the
pread of the pandemic.

Moreover, it is pertinent to note that our chosen subject within the air transport network is constructed on a country-wise basis.
nlike a seminal work (Guimera et al., 2005) that employs network science techniques to analyze the structural characteristics and
ommunity features of global aviation networks and sub-networks, we aim to assess the role of air transport networks in international
ransmission from a macroscopic perspective. As stated in Brockmann and Helbing (2013) and Sun et al. (2021a), air transportation
erves as the primary medium for virus diffusion between countries. Similarly, transportation-focused studies in Nikolaou and
imitriou (2020), Sun et al. (2021a) and Sun et al. (2022a), which analyze structural characteristics and transmission roles from an
ir transport country network perspective, also underscore that such analytical approaches can mitigate the influence of domestic
actors, such as other modes of transportation on transmission. Therefore, constructing networks from a country-wise angle is both
ational and substantiated, whether viewed from an epidemiological perspective or that of transportation networks.

From a methodological standpoint, our study provides a combined spatio-temporal modeling framework. In assessing spatial
2

mplications, we compare the disease’s initial arrival times with various effective distance metrics. By delving into the unique
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characteristics of each metric, we elucidate the sources of discrepancies and evaluate the viability of using these metrics to forecast
initial disease arrival times. For temporal evolution, our research expands the foundational network-based compartmental model
by incorporating an often-overlooked segment: the unreported infected individuals. Furthermore, our model integrates a policy
intervention function, accounting for the onset, intensity, and duration of policy measures. The model also captures the heterogeneity
and temporal nuances of policy implementations across different countries/regions. Validation experiments and sensitivity analyses
underscore the robustness and reliability of our model.

From the perspective of research questions, our analysis is multi-faceted, considering the distinct transmission characteristics
f COVID-19 across various stages. Recognizing the unique propagation traits of the disease within air transport networks and
ata utilization, we employ stage-specific medical parameters reflecting the disease’s transmission capability. Instead of the widely
sed yet often inaccurate traffic volume, we estimate passenger volume using load factor data, factoring in the potential influence
f transfer flights on the transmission process. While we are currently in the recovery phase of COVID-19, the emergence of new
ariants remains a concern. Given our model’s adaptability to different virus parameter characteristics, it can be extended to evaluate
he impact of these new variants on the aviation industry, thereby aiding in the formulation of more informed policies.

To the best of our knowledge, this is among the first analytical frameworks that integrate both spatial and temporal models to
valuate the role of air traffic networks in the spread of COVID-19 and its Omicron variant. Our contribution can be illustrated as
ollows:

• We introduce an integrated spatio-temporal modeling framework, tailored to the unique characteristics of the pandemic, to
evaluate the impact of air transport networks on COVID-19 transmission across multiple stages.

• We incorporate the influence of transfer flights on disease propagation, building upon traditional effective distance metrics.
By comparing and meticulously analyzing various effective distance indicators, we discern their relationship with the initial
arrival times of the disease, thereby shedding light on spatial implications.

• We enhance the conventional network-based compartmental model by integrating additional compartments. Synergistically
combining a policy intervention function, heterogeneous disease transmission parameters across nations, and time-varying
traffic flows, our model offers insights into temporal dynamics.

• We conduct an extensive array of validation and simulation experiments, underscoring the reliability and robustness of our
model. These experiments also elucidate how the implementation of policies at varying intensities can modulate disease
transmission.

The remainder of this study is organized as follows: Section 2 proposes a review of the extant literature for analyzing the role
f air transport networks on the development of COVID-19 from two aspects: modeling methods and influence analysis. Section 3
escribes the data and the related preprocessing. Section 4 provides the integrated models that are applied to our research. We
hen conduct the experiments of measuring the spatial and temporal influence in Section 5. In Section 6, we summarize the policy
mplications derived from our study from six aspects. Section 7 concludes our results, limitations, and provides some future research
irections.

. Literature review

We will summarize the literature relevant to our research from two perspectives. One is to provide an overview of the modeling
ethods used to depict the spread of COVID-19 through air traffic networks. The other is to outline the typical literature that

xamines the relationship and influence between COVID-19 and air transportation.

.1. Modeling methods

.1.1. Effective distance
The actual geographical distance commonly denotes the distance between two nodes in a specific network. However, employing

he geographic distance to determine its correlation with the epidemic transmission via air transport networks is inconsistent with
he natural evolution process of infectious diseases. For instance, an epidemic can be transmitted by busy flight schedules although
wo airports are far away from each other. As proposed by Brockmann and Helbing (2013), the innovative concept of effective
istance matched a higher relationship with the arrival dates of various diseases by converting the air passenger data to a metric.
urther, derived from the random walks theory, Iannelli et al. (2017) proposed general logarithmic metrics to predict the arrival
ime of disease on complex networks, which presented that diseases were more likely to spread via multiple paths.

In recent COVID-19 validation experiments, Adiga et al. (2020) apply the effective distance metric to measure the arrival time
f COVID-19 in the early stages. Kuo and Chiu (2021) investigate and compare the relationship between three different distance
etrics involving effective distance, shortest path distance, and random walk distance with the actual arrival time. Nevertheless,

hese results hardly consider the indirect links of air transport networks or involve current air passenger data during the pandemic.
n a recent study, Choi et al. (2022) investigate several variants, measuring the relationship between their arrival times and the
asic effective distance. An empirical model is also established to analyze the relationship between the disease’s arrival time and
olicies.

.1.2. Epidemiological models
The epidemiological models that predict the dynamic transmission of COVID-19 can be classified into four categories: statistical-
3

ased models, network-based models, agent-based models, and SI-based models.
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Statistical-based models
Typically, a statistical model is stated as a mathematical representation that reflects a set of statistical assumptions regarding

he relationship between one or more random variables and non-random variables. One of its broad applications is assessing the
andemic’s importation risk. Wells et al. (2020) evaluated the country-level importation risk probability and investigated how border
ontrol measures affected the spread of the outbreak using Monte Carlo simulations. Some other researchers apply statistical models
o estimate the role of air transport and high-speed rail in the propagation of COVID-19. Dai et al. (2021) utilized an Ordinary
east Squares (OLS) regression-based model to validate that air travel had a significant and favorable effect on the early stages
f pandemic growth. Similarly, Mahmud et al. (2021) indicated a strong association between the structure of transport networks
nd the presence of COVID-19 with a high Pearson correlation coefficient. The random-effects panel data model (Su et al., 2022),
conomic model (Zhu and Guo, 2021), and regression model (Sokadjo and Atchadé, 2020) have also been proposed to measure the
orrelation of new daily confirmed cases and some related factors including flight suspension.

The statistical models are very adaptable in terms of the structures and characteristics of the input data, and they can facilitate
he interpretation of the relationship between variables. However, they may not be suitable for analyzing the spatial and temporal
ffects of the pandemic based on the time-varying transport networks.
Network-based models
Metapopulation models are a concept that gives rise to network-based epidemiological models where linkages between regions

ndicate specific mobility flows (Ding et al., 2021). Network-based models are often utilized to generalize intricate interaction
etworks with complex network metrics so as to assess the probability and course of epidemic transmission. Ruan et al. (2021)
mployed Zipf’s law, a specific discrete power-law distribution connected with social networks, to predict the transmission of the
irus. In Coelho et al. (2020a), the authors applied a centrality metric named Eigenvector Centrality to determine the importance
f a country in the connected network. Network-based models can also be utilized to evaluate the importation risk. Li et al. (2021d)
stablished a high-speed rail (HSR) network and integrated the network metrics with probabilistic risk models to rank risks in
ifferent regions of China. Bao et al. (2021) uncovered that the impacts of pandemics on the worldwide air transportation network
ere aligned with global attacks via network robustness analysis.

Network-based models can more accurately replicate epidemic transmission and evaluate the risk if it is known how different
opulations/regions behave and interact. The analysis of infectious illnesses with individual detached structures is hampered by the
act that network-based models cannot describe micro-individuals (Li et al., 2021a).
Agent-based models
Agent-based models are based on individual modeling under the assumption that discrete individuals’ contact activities and

ersonal social networks contribute to disease spreading. We discover a small number of papers employing agent-based models to
xamine the diffusion of COVID-19. Chinazzi et al. (2020) proposed a Global Epidemic and Mobility Model (GLEAM) to analyze the
ffect of travel and quarantine on the dynamic evolution of the outbreak. Previous studies referred to Duan et al. (2013), Ciofi degli
tti et al. (2008) and Stefanoff et al. (2010).

Agent-based models have more adaptability and high predictability in simulation experiments. However, they are complicated
o evaluate and predict due to the complex operating mechanism and individual heterogeneity.
SI-based models
The Susceptible-Infective (SI) based model, often referred to as compartmental models, presents an intuitive comprehension of

ow infectious diseases transmit among the crowd. The basic model contains two categories of people: those who are susceptible
o infection (S) and those who are infected (I). There are numerous variations of SI-based models where the Susceptible-Infectious-
ecovered (SIR) model and the Susceptible-Exposed-Infectious-Recovery (SEIR) model are the two most used approaches. Yang
t al. (2020) developed an SEIR method to simulate the dynamic evolution of the disease. This framework can also incorporate
uman mobility and spatial factors, including traffic data and mobile phone signaling data. This is commonly referred to as the
etwork-based compartmental model, which simulates and analyzes how populations in different states spread and transmit within
network or geographical space (Chen et al., 2020; Zhang et al., 2020; Sun et al., 2022d; Luo et al., 2022).

However, there is no unanimous agreement on the optimal approach to model the dynamic progression of COVID-19, since
ach methodology possesses its unique characteristics and application domains. In our research, we are committed to analyzing the
nfluence of air traffic networks on the spread of COVID-19 from both spatial and temporal modeling perspectives. As such, the
etwork-based compartmental model combined with effective distance emerges as a particularly apt modeling approach.

.2. Relationship and influence analysis

There exists an extensive body of literature exploring the relationship and influence analysis between the COVID-19 pandemic
nd air transportation. Sun et al. (2021d) provide a comprehensive review, emphasizing the interplay between the COVID-19 disease
nd the aviation sector. They also highlight the role of aviation as a potential conduit for virus transmission. In their recent work, Sun
t al. (2022b) delve into the direct and indirect interplay between COVID-19 and air transportation. Additionally, they distill key
onclusions drawn from these studies and highlight policy implications geared toward building a pandemic-resilient aviation sector.

Drawing inspiration from Sun et al. (2021d) and Sun et al. (2022b), two primary themes emerge in the literature concerning the
nterrelation between the COVID-19 pandemic and air transportation. The first theme delves into the repercussions of the COVID-19
andemic on the aviation industry. In contrast, the second theme centers on the ramifications of air transportation on the spread
4

nd dynamics of the COVID-19 pandemic.
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2.2.1. Influence of the COVID-19 pandemic on air transportation
To date, there have been numerous articles analyzing the impact of COVID-19 on air transportation. Given that our paper focuses

n the spatio-temporal effects of air traffic networks on the spread of COVID-19, we will list some representative literature that
xamines the various ways COVID-19 affects air transport at the operational level. For a more detailed discussion, readers can refer
o these two reviews (Sun et al., 2021d, 2022b).

Table A.6 illustrates the impact of COVID-19 on air transportation at the operational level, primarily summarizing key findings
rom the literature in terms of network structural performance and the perspectives of traffic or passenger demand. Many articles
mploy time series analysis to observe the relationship between the growth sequence of COVID-19 cases and the reduction sequence
f flights. They identify the synchronicity between the two sequences, further uncovering the underlying patterns of influence (Sun
t al., 2021c; Wang et al., 2023; Sun et al., 2023b). Additionally, some studies have explored the relationship between the
eduction in aviation demand and the number of confirmed COVID-19 cases using time series analysis, offering relevant policy
uidance (Truong, 2021; Li et al., 2021b; Kim and Sohn, 2022). Moreover, the integration of complex network theory with time series
nalysis has emerged as a prevalent methodology. By examining the changes in the connectivity structure and network performance
uring the process of flight reductions, researchers analyze whether the aviation network possesses robustness (Sun et al., 2020;
hou et al., 2021; Li et al., 2022). They also investigate if the centrality indicators of the aviation network changed before and after
he outbreak of the pandemic (Sun et al., 2021a; Kuo et al., 2022).

.2.2. Impact of air transportation on the COVID-19 pandemic
The escalating international connectivity and the momentum of globalization have accelerated the spread of infectious diseases

ar beyond what was previously anticipated. As highlighted in Sun et al. (2021d), while the enhancement of connectivity and the
eduction in travel times are advantageous for passengers, they spell trouble for disease transmission. Historically, research has
ndicated that air travel acts as a significant catalyst for the global spread of infectious diseases (Colizza et al., 2006). However,
hen it comes to the unique characteristics of the COVID-19 virus, a thorough and scientific investigation is still required to gauge

he spatio-temporal evolution of its spread influenced by air transportation. In the following sections, I will delve into how prior
esearch has employed mathematical models to quantitatively measure this impact.

Li et al. (2020) employ multi-source data to analyze the efficacy of air transportation regulations in curbing the progression of
he pandemic. The study indicates that restrictions on air traffic can help reduce the number of confirmed cases in major cities.
owever, as the intensity of these restrictions increases, their impact diminishes. Drawing from existing research and global spatial
nd cartographic information, Nakamura and Managi (2020) calculate the overall relative risk of COVID-19 import and export for
ach airport in municipalities worldwide. Sun et al. (2022a) utilize complex network and time series analysis to explain why African
ountries did not witness a significant surge in infection cases and delve into the role of air transportation in this transmission process.
he study proposed by Mutascu and Sokic (2023), on the other hand, employs wavelet analysis to study the bilateral relationship
etween the pandemic situation in European countries and air traffic.

During different stages of the pandemic’s development, air transportation tends to have varying impacts on COVID-19, and
onversely, COVID-19 affects the aviation industry to different extents (Sun et al., 2023b). Yu and Chen (2021) employ a latent
ariable-based structural equation model (SEM) to analyze the influence of policies at different stages on the number of COVID-19
nfections, revealing that implementing circuit breaker policies alone might not be very effective. On the other hand, the presence
f different variants during various stages of the pandemic exhibits unique transmission characteristics, necessitating a meticulous
cientific analysis of these effects. Sun et al. (2021b) use network-based compartmental models and time series analysis to study the
elationship between the propagation time of COVID-19 variants and flight bans, concluding that national policies addressing variant
pread were indeed delayed. Choi et al. (2022) specifically examine several particular variants, measuring their first arrival time in
elation to the basic effective distance. Additionally, numerous articles approach the topic from a policy intervention perspective,
esearching how to formulate reasonable travel restriction measures to effectively curb the spread of COVID-19 (Truong, 2021; Zhang
nd Hayashi, 2022; Meng et al., 2023). It is essential to emphasize that many models’ initial assumptions are based on passenger
umbers. However, actual simulations and calculations often use flight frequencies or a uniform load factor as approximations,
hich can reduce the feasibility of the results. Sun et al. (2022c) and Choi et al. (2022) highlight potential sources of load factor
ata, such as Sabre Market Intelligence. They utilize the load factor data to identify abnormal flights executed by airlines during
he pandemic and the number of passengers during this period.

As outlined previously, we will employ a method that combines effective distance metrics with the network-based compartmental
odel to measure the role of air transport networks on pandemic transmission. Table 1 offers a concise comparison of relevant

iterature, underscoring the various problems addressed by these studies.
Our research provides a detailed examination of this domain. Notably, no current studies simultaneously analyze the impact of

ir transportation networks on COVID-19 transmission from both spatial and temporal modeling perspectives. Among these models,
ery few pieces of literature incorporate load factor data, and there is a limited number of studies addressing the effects of different
ariants. In specific spatio-temporal models, our methodology is more reflective of practical modeling situations. For instance, in
patial models, we consider transfer flights and utilize multiple effective distance metrics. In our temporal models, we consider
ix different facets that are more attuned to real-world problem modeling, something other papers have not completely achieved,
specially when considering the time-varying traffic flow and distinct medical transmission characteristics displayed by different
ariants during specific periods. It is important to acknowledge the challenges in accurately assessing the influence of air traffic
etworks on infection case counts in specific countries due to the complexity of the factors involved. As such, the methodology we
resent offers significant value, providing a reference point for the development of related policies and furnishing a solid framework
5

or the modeling and analysis of new variant outbreaks.
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Table 1
Summary of previous research on evaluation of the spatial and temporal effects of air transport networks on the spread of COVID-19.

Reference Study area COVID-19 Multiple Data Effective distance Network-based compartmental models

variants stages Recent Load
factor

Transfer
flights

Multiple
metrics

Time
varying

Heterogeneity Policy
intervention

Medical
parameters

Evolutionary
dynamics

Validation

Lau et al. (2020b) 4 Regions – – – – ✓ – NA NA NA NA NA NA
Daon et al. (2020) 6 Countries/Regions – – ✓ – – – NA NA NA NA NA NA
Coelho et al. (2020b) 5 Regions – – ✓ – – – NA NA NA NA NA NA
Adiga et al. (2020) 24 countries – – – – ✓ – NA NA NA NA NA NA
Chen et al. (2020) The US – – ✓ – NA NA – ✓ – ✓ ✓ ✓

Zhang et al. (2020) China – – ✓ – NA NA – – ✓ ✓ ✓ ✓

Nikolaou and Dimitriou (2020) European countries – – ✓ – NA NA – – ✓ – – -
Sun et al. (2021b) 25 countries ✓ ✓ ✓ – NA NA – ✓ ✓ – – ✓

Sheng et al. (2021) 10 countries – – ✓ – NA NA – ✓ ✓ – – -
Kuo and Chiu (2021) 29 countries – – – – – ✓ NA NA NA NA NA NA
Yu and Chen (2021) 6 Regions – ✓ ✓ – NA NA – – ✓ – – ✓

Liu et al. (2022) Singapore – ✓ ✓ – NA NA ✓ – ✓ – ✓ ✓

Sun et al. (2022d) 9 Countries ✓ – ✓ – NA NA – – ✓ – – ✓

Choi et al. (2022) 224 Countries ✓ ✓ ✓ ✓ ✓ – NA NA NA NA NA NA
Our work 24 Countries/Regions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 ‘‘–’’ indicates that the study did not consider this factor, ‘‘NA’’ signifies that the study did not take into account this type of model, while ‘‘✓’’ denotes that the study did consider this factor.
‘‘Study Area‘‘ refers to the geographical or thematic scope within the research’s experimental validation. ‘‘COVID-19 Variants’’ indicates whether the research has considered the various mutations of the virus. ‘‘Multiple Stages‘‘

enotes whether the study considers the impacts beyond the initial phase of the COVID-19 outbreak. ‘‘Data’’ encompasses whether the research utilizes the most recent data available and if it incorporates load factor data
r air passenger data for its analysis. ‘‘Effective Distance‘‘ entails whether the study takes into account the impact of transfer flights and if it considers multiple effective distance metrics in its experiments. ‘‘Network-based
ompartmental models’’ encompasses whether the study considers time-varying air passenger data, heterogeneous parameters, medical parameters, and the impact of policy intervention. Additionally, it evaluates if the research
ompares simulation results with actual data and showcases the fit between the simulated curves and the actual infection count over time.

.3. Research gap

Effective distance combined with network-based compartmental models offer useful insights into the pandemic’s impact,
onsidering various virus strains’ transmission characteristics. However, even with the existing literature that aligns with our research
uestion and methodology, there remain the following research gaps.

• To our knowledge, no existing studies present a modeling framework that concurrently addresses the spatial and temporal
impacts of COVID-19. Spatially, the framework correlates the virus’s initial arrival times with international passenger volumes.
Temporally, it examines how alterations in the aviation network affect COVID-19 case fluctuations. This integrated approach
offers a detailed perspective, providing valuable insights for analyzing the onset and progression of new virus outbreaks.

• The impact of air traffic networks on COVID-19 spread across its various phases has often overlooked the virus’s evolving
characteristics, such as changes in morbidity and infection rates (Arnaout and Arnaout, 2022). Notably, the transmissibility of
variants like Omicron significantly diverges from the virus’s initial strains. Although some studies consider different variants,
they rarely integrate these variants’ specific medical parameters into their models.

• Understanding the interaction strength between countries or regions is key to addressing networked transmission effects.
Traditional methods, mainly gravity models or average air traffic data, often fail to account for daily passenger volume
dynamics. This oversight can affect the accuracy of analyses, especially since COVID-19 case numbers are reported daily,
underscoring the need for models that reflect real-time passenger flow to better assess the aviation network’s role in COVID-19’s
spread.

• Utilizing network compartmental models to understand air transport networks’ dynamic impact on pandemics primarily sees
studies limited to basic simulations. While some research predicts discrepancies between model-projected disease arrival and
actual onset, and others simulate COVID-19’s trend within one country, extensive simulations across multiple nations are rare.
Moreover, few studies simultaneously examine how the timing, intensity, and duration of travel restrictions affect disease
transmission’s progression.

. Data

This section primarily outlines the data required for our experimental analysis. Section 3.1 introduces historical flight plan data
o construct the air transport country network and analyze changes in the network’s structure and performance. Section 3.2 presents
he use of load factor data to estimate the flow of air passengers between countries. Finally, in Section 3.3, we describe the collection
nd processing of COVID-19 and its variants’ data.

.1. Historical flight plan data

As outlined in Section 1 regarding the motivation for establishing country-wise air transport networks, here we detail the process
f utilizing historical flight plan data to construct the subject of our study. Understanding the network diffusion effects of disease
ransmission, we did not directly select representative countries such as China, the United States, and Europe-27 to construct
he aviation network, as done in Sun et al. (2021a). Instead, we initially selected top-ranking airports based on the volume of
rriving and departing flights. These airports are typically major aviation hubs and the primary transit points for international
lights in each country, making them more likely to serve as the main conduits for disease spread within the international
viation network (Nikolaou and Dimitriou, 2020). Subsequently, we aggregated data from these selected airports to construct the
6

orresponding national aviation networks.
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Fig. 1. The geographical distribution map of the selected 105 international airports. In this map, the circles’ size represents each airport’s takeoff and landing
volume in 2019, while the color indicates the change in flight volume between 2019 and 2020. It is important to note that due to varying policies implemented
by different countries, some airports actually experienced an increase in flight volume in 2020, resulting in a negative reduction percentage.

Specifically, using data provided by Airports Council International,1 we selected the top 50 airports in terms of air passenger
volume for the years 2019 and 2020, and merged them to form a consolidated database comprising 65 airports. Upon examining the
geographical distribution of these 65 airports, it [revealed] that the distribution of airports in certain countries was relatively dense,
potentially leading to an unrepresentative sample. Drawing inspiration from the selection criteria outlined in Sun et al. (2022a) and
Nikolaou and Dimitriou (2020), we further considered the primary international flight hubs in these countries, taking into account
the nuances of their population distribution. As a result, we expanded our initial list from 65 to a total of 105 international airports
for our study. The geographical distribution of these airports is depicted in Fig. 1.

It is evident that China and the United States have the highest number of international airports, spanning a wide geographical
range, symbolizing the two major aviation transportation subsystems (Sun et al., 2021a). Additionally, countries with significant
aviation markets in Europe, such as the United Kingdom, France, Germany, and the Netherlands, also play pivotal roles in global air
transportation. Moreover, the air transport networks of these 24 countries and regions represent the current mainstream level of the
aviation transportation market. Based on GDP data provided by the World Bank2 and the International Monetary Fund (IMF),3 as well
as annual flight take-off and landing data from the International Civil Aviation Organization (ICAO),4 these countries collectively
account for 72.3% and 71.3% of the global market,5 respectively, holding a significant share. Therefore, these airports, spanning
across 24 countries and regions, aptly reflect the global aviation network’s operational prowess.

After constructing our country-level aviation network for the study, we then proceeded to process the flight plan data required for
our experiments. The historical flight plan data comprises flight ID, callsign, aircraft type, airline, registration number, estimated
and actual departure and arrival times, all of which are sourced from Feeyo Technology Company Limited.6 We processed and
categorized nearly 80 million flight records into historical flight flow data for the 105 airports under our study. Fig. 2 simultaneously
displays the spatial distribution of these 105 international airports and the direction of flight flows between them. It can be observed
that airports with a higher volume of takeoffs and landings tend to have closer connections with other airports. Moreover, some
airports with a smaller volume of flights also have dense connections with hub airports. Given the intricate connectivity of the
aviation network and the transit nature of flights, this suggests that their role in disease transmission is also significant and cannot
be overlooked.

In Fig. 3(a), we provide a detailed representation of the monthly changes in the total flight volume of the selected 105 airports
in 2019 and 2020. It shows that the flight volume in 2020 was generally lower than that in the corresponding months of 2019. The
largest gap between the two years is observed in April and May, after which the difference gradually narrows. Additionally, we have
specifically analyzed the changes in transfer rates.7 The transfer rates in 2019 shows a relatively stable trend. However, there was
a significant drop in April 2020, likely due to many countries implementing travel restrictions to curb the spread of COVID-19. In
Fig. 3(b), we depict the volume of flights transferred between any two countries or regions. The United States has the highest volume
of international flights, followed by the United Kingdom. Influenced by flight control policies, China’s international flight volume
decreased compared to the same period in previous years, but it maintains strong connections with the major aviation systems.

1 www.aci.aero.
2 https://www.piie.com.
3 https://www.imf.org/.
4 https://www.icao.int.
5 GDP share (trillions of dollars): 63.482/87.751 = 72.3%; Flight volume share: 54630078 / 76598000 = 71.32%.
6 www.variflight.com.
7 Identification of transfer flights refer to Appendix B.
7
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Fig. 2. The geographical distribution of the chosen 105 international airports and their flight volumes and interconnections as of January 2019. In this
visualization, the size of the circles indicates the volume of takeoffs and landings at each airport. The color of the circles denotes which country or region the
airport belongs to, with airports of the same color indicating they are from the same country or region. Additionally, the lines connecting the airports signify
the existence of flights between them, with denser lines indicating a higher volume of flights. For clarity and to effectively illustrate the direction of flight flows,
we use the color of the departing airport to represent the color of the connecting flight route.

3.2. Load factor data

In Section 2, it is mentioned that many previous studies directly used flight volume data for experiments. However, many
modeling methods or evaluation indicators, such as effective distance and network compartmental models, rely on air passenger
data. Directly using flight volume assumes that the load factor of each aircraft during the pandemic is the same. As described in Sun
et al. (2022c) and Choi et al. (2022), the differences in the load factor data of aircraft are significant. Moreover, many airlines
operate flights with minimal passengers to retain their time slots, so using a single load factor data can reduce the experiment’s
credibility. Therefore, based on the obtained flight plan data, we further estimated the air passenger data by combining the load
factor data of airlines. We obtained the load factor data of the airlines for the countries under study from the CEIC database.8 Fig. 4
shows the monthly trend of these load factor data from 2019 to 2021. It can be observed that before 2020, the load factor data of
airlines was generally maintained at around 80%, with a few data showing significant deviations. After March 2020, there was a
noticeable decline, followed by a slight increase, and finally, it stabilized at around 40%.

3.3. COVID-19 and variants data

The term ‘‘COVID-19’’ in the study can encompass all forms of the virus, including its variants (Wells et al., 2020; Sun et al.,
2022b). However, it can also specifically refer to the virus during its initial phase of spread (Choi et al., 2022; Sun et al., 2021b).
To avoid confusion and ensure clarity, in this Section and Section 5, we use the terms ‘‘COVID-19’’ and ‘‘Omicron’’ to distinctly
represent the virus in its initial spread phase and the representative variant, respectively. When both terms are used side by side,
they serve to differentiate between the initial virus and its subsequent variant. In other parts of the article, unless otherwise specified,
‘‘COVID-19’’ is used as a general term encompassing all types of viruses.

In the analysis of the first phase, we sourced country-level reported case data from the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University.9 This dataset provides the cumulative daily numbers of confirmed, deceased and recovered
individuals for each country. For the second phase, our focus shifts to the impact of air traffic networks on the spread of COVID-19
variants. Given that the World Health Organization (WHO) has designated the new SARS-CoV-2 Omicron variant as having a very
high transmission risk10 and it has had a significant impact on various industries over the past two years (Tong et al., 2022), we
have chosen it as the subject of study for this phase.

Since its detection in South Africa in November 2021, the Omicron variant has spread to more than one hundred countries
and territories worldwide and has recently become dominant in several countries. We obtained biweekly moving averages from
Our World in Data11 and procured weekly updated data on Omicron variant cases12 from the GISAID Initiative.13 Inspired by

8 https://www.ceicdata.com.
9 https://github.com/CSSEGISandData/COVID-19.

10 https://www.who.int/zh/news/item/28-11-2021-update-on-omicron.
11 https://ourworldindata.org/.
12 We make the differentiation in our experiments that COVID-19 refers specifically to the early stages of the outbreak while Omicron is individually represented

as its variant.
13 https://www.gisaid.org/.
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Fig. 3. Illustration of the monthly fluctuations in air traffic volume and the transfer of air traffic between countries/regions.

he visualization tools provided in Arnaout and Arnaout (2022), we selected countries that publicly [reported] variant infection
ase numbers, specifically the United States and South Africa, to showcase the evolution trend of their deaths per million versus
ases per million in Fig. 5. Each colored counterclockwise loop represents different waves of variants, with dates labeled at the
eak of each wave. The dynamics of the variant show significant variations between countries. Within the same country, different
ariants exhibit distinct characteristics. For instance, Omicron is characterized by a high infection rate but a low mortality rate.
hus, incorporating these medical characteristics is important when constructing mathematical models for analysis. The red curve

ndicates that the variant is gradually gaining traction, underscoring the need for continued vigilance against the potential impacts
f these ever-evolving variants on our daily lives and productivity.

. Model

In this section, we present how we integrate the method of effective distance with network-based compartmental models to
onstruct a spatio-temporal analytical framework. In Section 4.1, we begin by refining the basic definition of effective distance to
ncorporate transfer flights, leading to the introduction of metrics such as shortest path distance and random walk distance. These
9
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Fig. 4. Monthly variation of load factor data from 2019 to 2021.

Fig. 5. The illustration of deaths per million versus cases per million for the United States and South Africa. Each colored wave defines the evolution of the
particular variant from the rightmost end to the origin. In the temporal diagram, waves progress from gray to purple, followed by two successive blue waves,
transitioning to green and culminating in two recent red waves. The intensity and label font increase as it nears the present. The flatter wave denotes the less
deadly but more contagious virus, such as Omicron. Refer to https://github.com/rarnaout/Covidcycles.

metrics are employed to compare and analyze the spatial relationship between different indicators and the initial arrival of diseases.
Subsequently, in Section 4.2, we introduce the IDVI metric, aimed at providing potential explanations for errors in predicting the
initial arrival time of diseases. Finally, in Section 4.3, we elaborate on the modeling process of our SUCRD model, which is based
on a system of ordinary differential equations (ODE) to simulate the progression of diseases. This includes detailing the model
assumptions, model descriptions, and the method for fitting these parameters through experiments.

4.1. Distance metrics

4.1.1. Effective distance
We adapt the traditional effective distance metric developed by Brockmann and Helbing (2013) to account for the influence of

indirect flights. As presented in Fig. 6, the direct air traffic passenger volume between departure airport 𝑀 and arrival airport 𝑁 is
denoted by 𝑓𝑚𝑛, and passengers are also capable of taking flights through transfer airports 𝐴 and 𝐵. Thus, we define total passenger
flow from airport 𝑀 to airport 𝑁 as

𝐹 = 𝑓 + 𝑓 + 𝑓 (1)
10
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Fig. 6. An example of a simplified airport network. There are four airports in the network where airport M and airport 𝑁 denoting the departure and arrival
airport and the others are the transfer airports.

Then, the corresponding flux percentage 𝑃𝑚𝑛 can be formulated as

𝑃𝑚𝑛 = 𝐹𝑚𝑛∕𝐹𝑚, 0 ≤ 𝑃𝑚𝑛 ≤ 1 (2)

where 𝐹𝑚 =
∑

𝑚≠𝑛 𝐹𝑚𝑛 is the sum of air traffic passenger volume from airport 𝑀 to all other direct and indirect airports. Therefore,
the effective distance 𝐷𝐸𝐹

𝑚𝑛 from airport 𝑀 to airport 𝑁 can be shown below:

𝐷𝐸𝐹
𝑚𝑛 = 1 − log

(

𝑃𝑚𝑛
)

, 𝐷𝐸𝐹
𝑚𝑛 ≥ 1 (3)

It can be seen that the larger the flow fraction 𝑃𝑚𝑛 is, the smaller the effective distance 𝐷𝐸𝐹
𝑚𝑛 will become, which implies a

negative relationship.
It is important to clarify that the consideration of the impact of transfer flights on the initial arrival times of diseases is not an

original concept. Choi et al. (2022), in its methodology for calculating effective distance, distinguish between countries connected
to the origin country by direct flights and those without (limited to no more than two-stop connections), applying definitions
from Brockmann and Helbing (2013) to compute effective distances and assess their correlation with the diseases’ initial arrival
times in these two groups of countries. Although they acknowledge the influence of transfer flights, our approach examines a more
detailed scenario, not differentiating between the two categories of countries but assuming that the epidemic can propagate across
any series of flights (Sun et al., 2021d). In our analysis of transfer flights (see Appendix B), we have identified up to seven-stop
flights within a single day, indicating that countries directly connected to the origin country by flights are also subject to the
importation risk of epidemics caused by transfer flights from other countries. This nuanced approach to calculating effective distance,
inclusive of transfer flights, and its implications for accurately predicting initial arrival times are further explored in our experimental
discussions. Moreover, our methodology encompasses more intricate effective distance metrics than those considered by Choi et al.
(2022) (detailed in subsequent Sections 4.1.2 and 4.1.3). Our comparative analysis with existing literature, presented in Section 5.4,
further elucidates the advantages of our fitting results.

4.1.2. Shortest path distance
The shortest path effective distance 𝐷𝑆𝑃

mn is the smallest total length of the effective distance from airport 𝑀 to indirectly
connected airport 𝑁

𝐷𝑆𝑃
𝑚𝑛 = min

𝛤𝑚𝑛

∑

(𝑖,𝑗)∈𝛤𝑚𝑛

𝐷𝐸𝐹
𝑖𝑗 (4)

where 𝛤𝑚𝑛 is the sum of all the possible paths from airport 𝑀 and 𝑁 and a path is a combination of consecutive link pairs (𝑖, 𝑗).

4.1.3. Random walk distance
Using the shortest path distance, we tacitly consider that the disease is transmitted between countries via one route: the route
11

that minimizes the topological distance between two countries. However, in reality, the pandemic can spread via multiple paths.
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Thus, in Iannelli et al. (2017), the authors provide a more realistic approach that takes into account the effect of multiple paths.
Starting from two paths, the authors find a generalized relation between multiple paths

{

𝛤𝑚𝑛
}

:

𝑒−𝐷
𝑀𝑃
𝑚𝑛 =

∑

𝛤𝑚𝑛

𝑒(−𝐷
𝛤𝑚𝑛 ) (5)

where 𝐷𝛤𝑚𝑛 is the effective distance associated with path 𝛤𝑚𝑛. It should be noted that the length of 𝛤𝑚𝑛 can be arbitrary. Following
Eq. (5), we can determine the multiple path distance by

𝐷𝑀𝑃
𝑚𝑛 = − log

(𝑡𝑚𝑎𝑥
∑

𝑡=1
𝑒−𝑡𝐹𝑚𝑛(𝑡)

)

(6)

𝐹𝑚𝑛 (𝑡) =
∑

|𝛤𝑚𝑛|=𝑡

∏

(𝑘,𝑙)∈𝛤𝑚𝑛

𝑃𝑘𝑙 (7)

In Eq. (6), 𝑡 refers to the path length of 𝛤𝑚𝑛 and 𝐹𝑚𝑛 (𝑡) is the total probability associated with the path 𝛤𝑚𝑛. In Eq. (7), 𝑃𝑘𝑙 is the
flux percentage representing the transmission probability from node 𝑘 to node 𝑙.

While the multiple path distance 𝐷𝑀𝑃
𝑚𝑛 integrates information from various direct paths between nodes, it can become

computationally cumbersome for large graphs due to the sheer number of potential paths between nodes. In an attempt to capture
more nuanced transmission possibilities in complex networks, Iannelli et al. (2017) introduce the concept of random walks from the
source to the target. A salient feature of random walks, in contrast to multiple paths, is that nodes can be revisited multiple times.
This is accommodated by the function 𝐻𝑚𝑛(𝑡), which is designed to permit such revisits. The resulting equation for the random walk
distance is:

𝐷𝑅𝑊
𝑚𝑛 = − log

( ∞
∑

𝑡=1
𝑒−𝑡𝐻𝑚𝑛(𝑡)

)

(8)

𝐻𝑚𝑛 (𝑡) =
∑

𝑘≠𝑛
𝑃𝑚𝑘𝐻𝑘𝑛(𝑡 − 1) (9)

Here, 𝐻𝑘𝑛(𝑡) can be derived using matrix power operations on the flux percentage matrix after specific rows and columns are
removed. Further details can be found in Appendix D.

However, it is crucial to note that with the introduction of random walks, the maximum path length becomes infinite. Our
updated analyses have shown that the simpler shortest path effective distance 𝐷𝑆𝑃

𝑚𝑛 tends to yield more accurate predictions in our
study’s context, suggesting that while random walks offer a broader perspective, they might not always be the most appropriate
measure for every scenario.

4.2. IDVI metrics

Developed by RAND corporation, the Infectious Disease Vulnerabilities Index (IDVI) is an indicator to identify different countries’
vulnerabilities to infectious disease outbreaks (Moore et al., 2017). The metric is generated using factors from seven broad domains:
demographic, health care, public health, disease dynamics, political-domestic, political-international, and economic. A higher IDVI
score of a country indicates that it is more resilient to disease outbreaks. Additionally, for countries with a similar effective distance
to the origin of the pandemic, IDVI provides another aspect of analyzing their difference in the delay of estimated arrival time and
importation risks.

4.3. SUCRD models

Network-based compartmental models, which simulate population changes during disease transmission, incorporate several
assumptions to simplify the complexities of individual behaviors and interactions (Kraemer et al., 2020; Liu et al., 2022). We
will outline the model’s assumptions, detailed in both the main text and the appendix. Subsequently, we will provide a detailed
description of our modeling process and the simulation process for parameter estimation and optimization.

4.3.1. Model assumptions
We have listed the assumptions incorporated in our model in Table 2, summarizing the characteristics and functions of these

assumptions from aspects such as their descriptions, aims, categories, and references.

4.3.2. Model descriptions
Our temporal analysis model draws inspiration from Zhang et al. (2020), which employ a network-based compartmental

model to delineate five population states: susceptible, unconfirmed infectious, confirmed, recovered, and dead (SICRD). Utilizing a
differentiable ODE solver by the frame of PyTorch, Zhang et al. (2020) solve for unknown parameters within the model, thereby
quantifying the impact of controlling population mobility between cities on the progression of the epidemic across these urban areas.

While our model’s core framework follows the conceptualization of Zhang et al. (2020) to a certain extent, there are several dif-
ferences and improvements. First, we have generalized the population groups considered in the model, defining five compartmental
states as susceptible, unreported infectious, confirmed, recovered, and death (SUCRD), replacing the unconfirmed infectious states
12
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Table 2
Summary of the model assumptions.

Number Assumption Description Category Aim Reference

1 Unreported infectious individuals, with or
without symptoms, are contagious and can
transition to confirmed, recovered, or
death states

Model definition Assisting in defining and
simplifying the model’s state
transition process to align with
the disease propagation process

Zhang et al. (2020)

2 An individual in the confirmed state is
isolated, with no chance of spreading
infection but possible transitions to
recovery or death

Model definition Assisting in defining and
simplifying the model’s state
transition process to align with
the disease propagation process

Zhang et al. (2020) and Chen et al. (2020)

3 Individuals in the recovered state have
been cured and are immune

Model definition Assisting in defining and
simplifying the model’s state
transition process to align with
the disease propagation process

Zhang et al. (2020) and Chen et al. (2020)

4 There exists inflow and outflow in the
susceptible, unreported infectious and
recovered states

Model definition Assisting in modeling the
movement behavior of
populations in different states to
simulate the disease propagation
process

Zhang et al. (2020) and Chen et al. (2020)

5 We calculate Omicron recoveries and
deaths by multiplying confirmed cases with
the corresponding COVID-19 recovery and
death rates for that period

Data estimation Assisting in estimating the
recovery and death count for
Omicron

/

6 We select cases that visited Wuhan before
showing symptoms and assume they got
infected on their first day there

Parameter
estimation

Assisting in computing the
values of parameters 𝐷𝐼 and
𝐷𝐶

Zhang et al. (2020)

7 We assume that the time from infection to
becoming infectious is negligible

Parameter
estimation

Assisting in computing the
values of parameters 𝐷𝐼 and
𝐷𝐶

Zhang et al. (2020)

in SICRD with unreported infectious states. This adjustment accounts for the population that is unable to adequately detect during
international flights (Lau et al., 2020a).14 Second, we have further refined the model by incorporating the heterogeneity of disease
transmission rates and control measures, as well as the time-varying number of international air travelers. These enhancements
are both necessary and challenging, as Sun et al. (2021a,b), Yu and Chen (2021) and Lu et al. (2021) highlight the importance of
reflecting the heterogeneity of national policies and infection levels, as well as the dynamic effects of actual travel demand. This
also addresses the shortcomings of the SICRD model emphasized in Zhang et al. (2020) and identified as areas for improvement in
future work. Third, due to the more detailed modeling of actual influencing factors in our SUCRD model, we find that the simulation
framework proposed by Zhang et al. (2020) is not suitable for SUCRD. Therefore, we have established a set of parameter evaluation
and simulation processes based on the Differential Evolution Algorithm, detailed in subsequent experiments and Appendix H. As
stated in Guan et al. (2022) and Zhang et al. (2022), for disease transmission modeling, extending the model and designing an
effective simulation algorithm are of equal importance. Therefore, under the premise of improving the model, being able to design
a valid parameter evaluation method also constitutes a significant technical contribution. Finally, in Section 5.3, we demonstrate
the effectiveness of our model, which accounts for time-varying passenger flows, in enhancing simulation results compared to the
model that, akin to the SICRD model’s setting, only considers average passenger flows. Fig. 7 depicts the SUCRD model’s structure
and transition between its five states.

We then describe the five states mentioned above in detail as follows:

• Susceptible state: This is a healthy state where people become infected if they contact an infectious individual.
• Unreported infectious state: People who are in this state may or may not have symptoms, yet they are contagious, and they

can transfer to the confirmed state, recovered state, or death state.
• Confirmed state: We presume that a person in this state will be isolated, and there is no likelihood that he or she would spread

the infection to others but could move to the recovered or death state.
• Recovered state: People who have been cured and are immune.
• Death state: The fatalities caused by COVID-19.

14 Note that although our model’s unreported state may encompass a broader group of individuals compared with the SICRD model, as Zhang et al. (2020)
uggest that the ‘‘exposed’’ state in the SEIR model is included within the unconfirmed infectious state of the SICRD model, the principles of our model parameter
13

stimation and training remain fundamentally unchanged.
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Fig. 7. The state transition diagram of the SUCRD model. 𝑆𝑛 , 𝑈𝑛 , 𝐶𝑛 , 𝑅𝑛, and 𝐷𝑛 are the state populations where numbers on the arrow denote the transition
robability between states. We assume that there also exists inflow and outflow in the states 𝑆𝑛 , 𝑈𝑛 and 𝑅𝑛.

Our proposed SUCRD model can be expressed mathematically by the following ordinary differential equations.
𝜕𝑠𝑛
𝜕𝑡

= −
𝑅0
𝐷𝐼

𝜉𝑛𝑠𝑛𝑢𝑛 +
𝜔
𝛾
∑

𝑚≠𝑛
𝑃 𝑡
𝑚𝑛

(

𝑠𝑚 − 𝑠𝑛
)

𝜕𝑢𝑛
𝜕𝑡

=
𝑅0
𝐷𝐼

𝜉𝑛𝑠𝑛𝑢𝑛 −
1
𝐷𝐼

𝑢𝑛 +
𝜔
𝛾
∑

𝑚≠𝑛
𝑃 𝑡
𝑚𝑛

(

𝑢𝑚 − 𝑢𝑛
)

𝜕𝑐𝑛
𝜕𝑡

=
𝛼𝑛
𝐷𝐼

𝑢𝑛 −
1
𝐷𝐶

𝑐𝑛

𝜕𝑟𝑛
𝜕𝑡

=
(1 − 𝛽)

(

1 − 𝛼𝑛
)

𝐷𝐼
𝑢𝑛 +

(1 − 𝛽)
𝐷𝐶

𝑐𝑛 +
𝜔
𝛾
∑

𝑚≠𝑛
𝑃 𝑡
𝑚𝑛

(

𝑟𝑚 − 𝑟𝑛
)

𝜕𝑑𝑛
𝜕𝑡

=
𝛽
(

1 − 𝛼𝑛
)

𝐷𝐼
𝑢𝑛 +

𝛽
𝐷𝐶

𝑐𝑛

(10)

where 𝑠𝑛 = 𝑆𝑛∕𝑁𝑛, 𝑖𝑛 = 𝐼𝑛∕𝑁𝑛, 𝑐𝑛 = 𝐶𝑛∕𝑁𝑛, 𝑟𝑛 = 𝑅𝑛∕𝑁𝑛, 𝑑𝑛 = 𝐷𝑛∕𝑁𝑛 are the proportions of susceptible, unreported infectious,
onfirmed, recovered, and dead individuals in country 𝑛 respectively while 𝑁𝑛 represents the population of country 𝑛. 𝑃 is the
lux fraction matrix produced by the historical air passenger data (see Section 3), and especially 𝑃 𝑡

𝑚𝑛 denotes the corresponding
roportion matrix from country 𝑚 to country 𝑛 at day 𝑡. All other parameters are detailed in Table 4. We will elaborate on the
erivation and estimation of these parameters in the subsequent paragraphs and the appendixes. As Fig. 7 shows, people in states
𝑛, 𝑈𝑛 and 𝑅𝑛 could move to other countries and induce population mobility between countries.

In addition, inspired by Zhang et al. (2020), we propose an enhanced heterogeneous intervention term 𝜉𝑛 in country 𝑛 to
eplicate the intervention approach that the government employs to limit contact or interaction among people, including some
ocial-distancing and isolation rules. The form of the intervention function is shown below:

𝜉
(

𝑡, 𝑡0, 𝑡𝑚, 𝜆
)

= 1
1 + exp

(

𝜆
(

𝑡 − 𝑡0 − 𝑡𝑚∕2
)) (11)

𝜆 = 2
log

(

1−𝜀
𝜀

)

𝑡𝑚
(12)

The intervention function represented as a Logistic model is affected by the following factors: the initiating time 𝑡0 and the control
strength 𝜆 determined by the ratio of an acceptable reproduction number 𝜀 and the duration time 𝑡𝑚. A larger value of 𝜆 (a relatively
maller 𝑡𝑚 when fixing 𝜀) means the disease can be controlled in a shorter period under a fixed value of 𝜀. As described in Fig. 8,
e set 𝑡0 and 𝑡𝑚 as different values to compare how these elements influence the function. Notably, since the intervention term 𝜉𝑛 is
ultiplied by the infectious term, a smaller value of the intervention term will result in more rapid pandemic prevention. Moreover,

n our simulation experiments, we design numerous integration of these parameters in Table 3 to perform different control policies
14

𝑛 in real-world circumstances and evaluate how these various interventions influence the estimated confirmed cases.
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Table 3
Parameters of the intervention control.

Parametera Description Valueb

𝑡0 The initial time of implementing intervention control 0–40
𝑡𝑚 The periods needed for stabilizing the pandemic spreading 14–139
𝜀 The acceptable ratio of the reproduction number 𝑅0 0.01–0.2

a These parameters can reflect when the intervention policy starts, how long it lasts, and what the control strength is.
b The units of 𝑡0 and 𝑡𝑚 are days. For example, China implemented a strong lockdown policy in Wuhan on January 23, 24 days
after December 31, 2019. It is the initial date of our first validation experiment, then we have 𝑡0 = 24. Moreover, if we restrict
the reproduction number to the acceptable level 𝜀𝑅0, we could stop the policy implementation. All these parameters are derived
from the actual policy taken in every individual country.

Table 4
Parameters of the SUCRD model.

Parametera Definition Description Value[Median]b

COVID-19 Omicron

𝐷𝐼 Time duration from infected to be
confirmed

This is calculated based on patient
medical records

8.4 4.0

𝐷𝐶 Time duration from being confirmed
to be recovered or dead

This is calculated based on patient
medical records

9.2 5.8

𝛽 The fatality proportion The average ratio of deaths to the
total number of infectious people

0.023 0.015

𝑤 The average migration ratio The total air traffic flux between
countries divided by the total
population

0.042% 0.042%

𝑅0 Basic reproductive number The average number of cases directly
infected by one infectious case

2.33 9.5

𝛼𝑛 The rate of transferred confirmed
cases among all cases in the country
𝑛

Estimated by fitting the data 0.93 0.88

𝛾 The ratio of air transportation in
total travel modes

Estimated by fitting the data 90% 92%

𝑈𝑛(0) The initial number of unreported
infectious cases in country 𝑛

Estimated by fitting the data 414 522

a Calculation of 𝑤, 𝐷𝐼 and 𝐷𝐶 refers to Appendices C and G.
The estimated parameters are recorded under 50 parallel searches.

Detailed descriptions and estimation for parameters 𝐷𝐼 , 𝐷𝐶 , 𝛽, 𝑤,𝑅0, 𝛼, 𝛾, 𝑈𝑛(0) are shown in Table 4, where 𝐷𝐼 , 𝐷𝐶 and 𝛽 are
retracted and calculated from patient clinical records while 𝑤 is estimated in historical flight plan data (see Appendices G and C).
t is evident that the medical characteristics of the COVID-19 virus in its early stages differ significantly from those of the Omicron
ariant. Specifically, Omicron has a shorter incubation period, and higher transmissibility, but a lower fatality rate compared to
he initial strain of COVID-19. We have incorporated these factors into our model to better assess the impact of air transportation
etworks on the spread of different types of viruses. The remaining parameters 𝑅0, 𝛼, 𝛾, and 𝑈𝑛(0) need to be estimated by fitting
he number of confirmed cases for the corresponding countries in different scenarios. Thus, we define the loss function as

min
𝑅0 ,𝑈𝑛(0) ,𝛼𝑛 ,𝛾

𝐿 =
∑

𝑛

∑

𝑡

[(

𝑐𝑛(𝑡)𝑁𝑛
)

−
(

𝐶∗
𝑛 (𝑡)

)]2 (13)

where 𝑐𝑛(𝑡) is the predicted confirmed proportions in country 𝑛 at time 𝑡 and 𝑁𝑛 denotes the population of country 𝑛, while 𝐶∗
𝑛 (𝑡)

is the corresponding reported confirmed cases. In Appendix H, we provide a detailed derivation and estimation of parameters such
as 𝑈𝑛(0). We solve this optimization problem by applying the Differential Evolution Algorithm via the Python toolkit 𝐺𝑒𝑎𝑡𝑃𝑦.15

5. Experiment

In this section, we are dedicated to presenting our detailed experimental analysis. Section 5.1 introduces the software and
libraries used in the experiments, as well as the execution process of the experiments. Section 5.2 displays the spatial effects
experiment, including analysis of fitting effects and error analysis, while Section 5.3 presents the temporal effects experiment,
encompassing detailed validation processes and simulation experiments. Section 5.4 summarizes our experimental results and
provides a comparative analysis with previous literature findings.

15 https://github.com/geatpy-dev/geatpy.
15
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Fig. 8. The functional form of the intervention control. 𝑡0 is the time that control interventions are to be implemented and 𝑡𝑚 denotes the duration. We set
different combinations of 𝑡0 and 𝑡𝑚 to examine how it affects the intervention function 𝜉.

5.1. Experimental setup

Our experiments were conducted on a local computer equipped with a 3.80 GHz Intel i7-10700K CPU, utilizing Python 3.8.8
as the primary coding framework. For the spatial effects analysis, we employed software packages such as 𝑁𝑢𝑚𝑝𝑦, 𝑃𝑎𝑛𝑑𝑎𝑠, and
𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑥 for analytical processing. In the temporal effects analysis, we further utilized the ODE-solving module from 𝑆𝑐𝑖𝑝𝑦 and
the Differential Evolution Algorithm framework from 𝐺𝑒𝑎𝑡𝑃𝑦 for parameter estimation and simulation implementation of the ODE
system.

The implementation of our experiments is delineated as follows. Initially, we constructed various effective distance metrics by
estimating air passenger numbers between different countries. These metrics were then correlated with the initial arrival times of
diseases through linear regression, allowing us to analyze the outcomes and associated errors. Subsequently, we processed daily
reported infection, recovery, and death figures from each country, amalgamating the daily transferring air passenger numbers
between countries. This data was then inputted into the established ODE system for simulation experiments, during which parameters
were optimized and evaluated (see Appendix H). Finally, the optimized parameters were inputted into the ODE-solving framework,
facilitating a comparison between the simulated transmission curves and the actual changes in infection numbers.

5.2. The spatial effects analysis

The spatial effects of air transport networks on the spread of COVID-19 are analyzed by quantifying the first arrival time of
the pandemic in the countries studied. Taking the initial phase of the pandemic as an example to illustrate our analysis process,
we recognize China as the early epicenter of the COVID-19 outbreak. For any given country 𝑖, we define 𝑇 1

𝑖 as the date of its first
confirmed case. The interval 𝑇𝑖 = 𝑇 1

𝑖 − 𝑇 1
𝐶ℎ𝑖𝑛𝑎 represents the time duration for COVID-19 to spread from China to the country 𝑖.16

The propagation time 𝑇𝑖 could be influenced either by the geographic distance 𝐷𝐺 or by the effective distances
{

𝐷𝐸𝐹 , 𝐷𝑆𝑃 , 𝐷𝑅𝑊 }

from country 𝑖 to China, as mentioned in Section 4.1. Utilizing the most recent air passenger data from January 2020 and taking
into consideration the influence of transfer flights, we can calculate the effective distance metrics from China to other nations.
Our utilization of linear regression to analyze the relationship between effective distance and the initial arrival times of diseases
is informed by both foundational and recent research methodologies. Initially, the concept ‘‘effective distance’’ was explored in
seminal works focusing on the spread of SARS and H1N1 (Brockmann and Helbing, 2013), where linear regression was utilized
to simplify the complex spatio-temporal patterns of disease propagation into a more manageable wave-like model. It highlighted
a stronger correlation between effective distance and disease arrival times than geographical distance, establishing a precedent for
our analysis. In line with this, our research adopts China and South Africa as the initial outbreak points for COVID-19 and Omicron,
respectively, mirroring the original article’s approach of selecting specific locations. Furthermore, our construction of effective
distance metrics, grounded in international air passenger numbers, aligns with the original methodology, aiming to compare different
effective distances with the arrival times of the prevalent infectious diseases (Sun et al., 2021a). Recent literature (Adiga et al., 2020;
Kuo and Chiu, 2021; Choi et al., 2022) also embraces linear regression to dissect the dynamics between COVID-19’s arrival times and

16 For the detailed data acquisition and correction process, see Appendix F.
16
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Table 5
Considering vs. not considering transfer flights: effect on fitting performance for effective distances.

Distance metrics COVID-19 Omicron

Without transfer With transfer Without transfer With transfer

Effective distance 0.50 0.67 0.24 0.27
Random walk effective distance 0.63 0.71 0.32 0.40
Shortest path effective distance 0.75 0.84 0.36 0.43

effective distances, reinforcing the relevance and applicability of this analytical technique in current pandemic scenarios. Our study’s
alignment with these methodological precedents, coupled with our specific problem settings and metric constructions, justifies our
use of linear regression. This method facilitates direct comparisons with prior findings and underscores the advantages of our refined
metrics, providing a solid rationale for our analytical choices.

Fig. A.18 displays the correlation between the COVID-19 transmission time 𝑇𝑖 and the four distance metrics. The effective distance
is shown to be a more reliable predictor of an epidemic’s initial arrival time compared to the geographic distance. Further analysis
indicates that the shortest path effective distance, which is considered the most efficient path through potential indirect connections
between airports, provides the most accurate predictions. This finding contrasts with previous research that posited diseases tend
to spread via multiple routes (Iannelli et al., 2017). One possible explanation for this discrepancy is the rapid enactment of global
travel restrictions following the initial COVID-19 case detection, which significantly altered the international air transport network.

Turning our attention to the Omicron variant, its transmission is traced back to South Africa.17 Using a methodology analogous
o our COVID-19 study, we evaluate the capacity of the geographic distance 𝐷𝐺, along with the effective distances 𝐷𝐸𝐹 , 𝐷𝑆𝑃 , and
𝑅𝑊 , to predict the first arrival time of Omicron. It is important to note that the countries selected for the COVID-19 and Omicron
lots differ. This is primarily due to the limited availability of data for the Omicron variant in certain countries. Consequently, the
ets of countries in the two analyses are not identical. As illustrated in Fig. A.19, the results indicate that the effective distance
etrics, particularly the shortest path effective distance 𝐷𝑆𝑃 with an 𝑅2 of 0.43, are more robust predictors of Omicron’s first

rrival time compared to the geographic distance, which has an 𝑅2 of 0.22. This finding is consistent with our analysis of the
riginal COVID-19, where the shortest path effective distance emerged as the most accurate predictor. The random walk effective
istance 𝐷𝑅𝑊 also exhibits significant predictive power with an 𝑅2 of 0.40.

However, the 𝑅2 values for Omicron are notably lower than those observed for COVID-19. This reduction can be attributed to
several factors, including the limited data availability and potential inaccuracies in reported initial arrival times for some countries.
Furthermore, the rapid spread of the Omicron variant suggests a shortest-path propagation mechanism, much like the original
COVID-19. Yet, given the challenges in data collection and the inherent uncertainties tied to the Omicron variant, these results
should be interpreted with caution. For a detailed description of the data collection and processing specific to Omicron, readers can
refer to Appendix E.

To validate the impact of incorporating transfer flights into our improved metrics on simulation outcomes, we have compared
them against the original metrics that only consider direct flights. As shown in Table 5, we present the comparative fitting effects
(𝑅2 values) of considering versus not considering transfer flights for the effective distance, random walk effective distance, and
shortest path effective distance against the initial arrival time of diseases in both COVID-19 and Omicron scenarios. The fitting
capabilities of the three metrics that account for transfer flights surpass those that only consider direct flights in both scenarios.
Moreover, the shortest path effective distance continues to exhibit the best fitting effect even without considering transfer flights.
Therefore, transfer flights play an indispensable role in the disease transmission process and can aid in accurately predicting the
disease’s initial arrival time.

In Fig. 9, we present the estimation error of the first arrival time for both the initial phase of COVID-19 and the Omicron variant
eriods. This error quantifies the disparity between the predicted arrival times, derived from the shortest path effective distance
SPED), and the actual reported times of arrival. Our choice to employ SPED for this analysis is grounded in its demonstrable
ccuracy for both the initial phase of COVID-19 and the Omicron variant in our tests.

For the initial wave of COVID-19, most countries demonstrate estimation errors that hover within a −3 to 3-day window.
et, certain outliers, notably Hong Kong (China) and Thailand, deviate significantly from this norm. Transitioning our focus to
he Omicron variant, the estimation landscape broadens. Countries, like Turkey and Japan, exhibit errors that surpass 6 days,
nderscoring a marked divergence between predictions and actual events.

Expanding upon this analysis, and referencing the methodology from Adiga et al. (2020) using IDVI metrics to elucidate this
anifested discrepancy, Fig. 10 highlights the intricate association between IDVI scores and the time of arrival. A discernible trend

merges, indicating a negative correlation between the two. This suggests that nations with robust health infrastructures, as reflected
n higher IDVI values, tend to swiftly detect and report pandemics. In stark contrast, countries with diminished IDVI scores, such
s Mexico and Brazil during the COVID-19 phase, grapple with reporting delays, leading to magnified estimation errors. As further
etailed in Section 4.2, we highlight the synergy between the IDVI indicator and effective distance metric. Together, these metrics
rovide a valuable tool for authorities to assess disease importation risks and develop informed epidemic prevention strategies.

17 For this analysis, we incorporated case and flight data from South Africa’s top four international airports.
17
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Fig. 9. The plot presents the estimation errors in predicting the arrival time of both COVID-19 and the Omicron variant across various countries using the
Shortest Path Effective Distance (SPED). For each variant, individual bars represent countries, with their lengths indicating the estimation error and their color
gradient reflecting the SPED value. Countries with the most pronounced overestimation and underestimation errors are emphasized with red outlines.

Fig. 10. The relationship between IDVI metrics and reported arrival time for both COVID-19 and Omicron. Each circle represents a country or region, with the
size of the circle determined by the absolute estimation error of the arrival time, and the color of the circle grouped by the continent to which the country
belongs. This visualization facilitates a comparative analysis of the determined first arrival times, estimation errors, and their corresponding IDVI values for
certain countries.

Concluding our spatial impact analysis, we discern that the initial arrival time of diseases correlates more significantly with
the shortest path effective distance, likely due to the structural impact of travel restrictions on the air traffic network during
the pandemic. This renders the random walk distance’s concept of recurrent visits to specific nodes less applicable under current
circumstances. Moreover, we validate that the fitting capabilities of our improved metrics, which consider transfer flights, surpass
those of the original metrics that only account for direct flights. We employ the shortest path effective distance to predict the
disease’s initial arrival time and attempt to provide possible explanations using the IDVI metric. It is noteworthy that the fitting
results in the Omicron scenario are not as satisfactory, largely due to the absence of precise Omicron data. Therefore, more detailed
simulation experiments, including considering more complex transmission patterns during this scenario, require further exploration.
We summarize related future directions in Section 7.2.

5.3. The temporal effects analysis

We assess the temporal influence of air transport networks on the spread of COVID-19, considering its progressive nature. To this
end, we undertake a multifaceted analysis, encompassing both validation and simulation experiments, during the initial phase of
18
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Fig. 11. Validation of our model across all selected countries during both COVID-19 and Omicron stages. The 𝑥-axis represents the duration in days from the
espective starting point. The predicted confirmed cases (orange dots), align closely with the actual reported cases (green dots). This alignment underscores the
obustness and precision of our model.

OVID-19 and the Omicron period. As delineated in Section 3, for clarity, we use ‘‘COVID-19’’ and ‘‘Omicron’’ to denote these
espective stages. Furthermore, we broaden our validation experiments to include the scenario with multiple outbreak origins,
nsuring a further evaluation of our model’s generalizability.

.3.1. Validation experiments
We assess the accuracy of our model by comparing its estimated outcomes for the chosen countries/regions with the actual

eported cases across three distinct stages.
Stage 1 (COVID-19): From 2019.12.31 to 2020.02.28
As depicted in Fig. 11(a), the predicted confirmed cases18 from our proposed model are plotted against the actual reported cases

or all the countries selected in our study, demonstrating a strong alignment. A notable inflection point in the green dotted curve
ay be attributed to the revised diagnostic criteria adopted in Wuhan to encompass all clinically diagnosed cases, while other cities

ontinued to rely on the previous diagnostic tools. The infected cases, which include both confirmed and unreported infectious cases,
re represented by the blue lines, indicating a significant discrepancy from the officially reported cases. This implies that during the
arly outbreak stages, many infectious individuals may have gone undiagnosed or were asymptomatic, largely due to the absence
f effective diagnostic and treatment measures.

Additionally, it is important to recognize that the characteristics of cases and the policies implemented in response to the
utbreak can differ across countries. To provide a more extensive validation of our assumptions, especially in the context of spatial
obility, we delve into detailed experimental results for each country, as depicted in Fig. 12. Given that our study encompasses 24

ountries/regions, for clarity and representativeness in our validation, we have selected a subset of countries/regions for a detailed
omparison of the evolution of case numbers. Our selection is primarily based on the following criteria: inclusion of the origin
ountry of the outbreak, countries at different stages of infection severity, and typical aviation hubs. For instance, in Fig. 12, China
s the epicenter of the outbreak, while the aviation systems of the United States and the United Kingdom serve as major global hubs.
he other countries showcased represent varying levels of infection severity during the respective phase of the pandemic.

As depicted in Fig. 12, the SUCRD model incorporating 𝑃 𝑡
𝑚𝑛 generally delivers the most accurate results. However, in certain

ountries, its performance does not show a pronounced difference compared to the SUCRD model with 𝑃𝑚𝑛.19 This might be attributed
o the fact that the temporal variation in air passenger demand in these countries is closely aligned with the average traffic demand.
urthermore, both models significantly outperform the SUCRD model that neglects spatial air traffic mobility, underscoring the
ivotal role of the aviation network in the early stages of the COVID-19 outbreak. It is worth emphasizing that these findings are
onsistent across countries that exhibit a rising trend in confirmed cases, demonstrating the robustness of our model in fitting various
pidemic trajectories.

However, in the case of China, we observe that the fitting curves of all three models are nearly identical, especially in the mid-to-
ate stages of the curve, closely matching the actual infection numbers. The distinguishing factor among these models is whether they
onsider (time-varying) air passenger data. This suggests that, during this period for China, the significance of considering spatial
ir mobility seems to diminish. Following Kraemer et al. (2020), this period of epidemic spread in China before February 10, 2020,

18 The number of confirmed cases refers to the daily existing confirmed cases rather than the cumulative confirmed cases.
19 The monthly average air traffic mobility matrix.
19
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Fig. 12. Comparison between the simulation outcomes using three distinct models and the actual reported case numbers in China and other representative
countries, as per the selection criteria mentioned earlier, during stage 1. The eight sub-figures presented correspond to the experimental results for the following
selected countries: China, Hong Kong (China), Japan, South Korea, Singapore, Thailand, United Kingdom, and the United States.
20
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is defined as the early epidemic phase, while the subsequent period is termed the ‘‘widely spread’’ phase. Further referencing (Chen
et al., 2020; Murano et al., 2021), although they do not explicitly define the ‘‘widely spread’’ phase for domestic epidemics, they
provide a relative definition—namely when the disease is distributed across all states within a country. Considering the distribution
characteristics of the epidemic in China during this period and the segmentation method of Kraemer et al. (2020), we also define
the simulation period after February 10 as China’s ‘‘widely spread’’ phase. Therefore, the analysis suggests that during this phase,
the impact of travel restrictions may become less significant and does not greatly influence the overall epidemic trend. Our findings
are consistent with the conclusions drawn in previous studies proposed by Kraemer et al. (2020), Chen et al. (2020) and Murano
et al. (2021). However, while these studies are based on domestic scenarios, our analysis focuses on the international aviation
network, examining the impact of travel restrictions between countries on the spread of COVID-19. This perspective offers a broader
understanding of the pandemic’s dynamics in the context of global air travel and its implications for international policy-making.

Stage 2 (Omicron): From 2021.11.01 to 2021.12.30
We further validate our assumptions by comparing the estimated results with the reported cases using Omicron data. As depicted

n Fig. 11(b), our predicted confirmed cases align closely with the reported confirmed cases, though the inferred number of infected
ndividuals is higher than the previous estimates. To provide a detailed demonstration of our model’s capability to fit the infection
urve for individual countries, we continue to select representative countries for simulation experiments based on the criteria
entioned earlier: the origin of the outbreak, major aviation hubs, and countries representing different stages of the epidemic’s
rogression.

Similar to the COVID-19 stage, simulation outcomes from the SUCRD model with 𝑃 𝑡
𝑚𝑛 generally align with the trend of the

eported confirmed cases in these countries, as illustrated in Fig. 13. In some countries, there are subtle differences compared to
he SUCRD model with 𝑃𝑚𝑛. In most countries, models that do not consider air traffic mobility typically exhibit the poorest fit.
owever, in countries like the United States and the United Kingdom, the fit between the three different simulation models and the
ctual infection curve is nearly indistinguishable. Upon further investigation, it was confirmed that during this period, the Omicron
ariant had already spread widely across all regions of the aforementioned countries. Thus, we can conclude similar to that of Stage
: During the epidemic’s widespread phase, the role of air transport networks diminishes, and implementing travel restrictions may
ave limited impact in altering the course of the outbreak.
Stage 3 (Additional validation): From 2020.09.01 to 2020.10.30
Furthermore, we extend our model to address a complex scenario where a global outbreak originates from multiple sources and

preads extensively to gauge its accuracy and adaptability. We select a mid-phase period during the initial outbreaks of COVID-
9 and Omicron (from 2020.09.01 to 2020.10.30), as mentioned in Sun et al. (2023b), which is influenced by multiple-origin
utbreaks. It is important to note that our simulation process during this phase, including data processing, parameter estimation,
nd simulation validation, remains consistent with the previously described procedures. The challenge lies in the selection of initial
arameters for the simulation phase. Given the complex and variable environment of this phase, determining the initial number of
nreported infectious individuals and accurate medical parameters becomes difficult. We treat the unreported infectious numbers
f each country as optimization variables and use the early phase model parameters as a preliminary attempt. We discuss this
xperiment in our future work in Section 7.2.

Given the scarcity and difficulty in obtaining and estimating parameters for this situation, we select four countries that show
elatively good simulation results for demonstration. As depicted in Fig. 14, even in situations where data quality deteriorates
nd is susceptible to fluctuations, our model aligns reasonably well with the reported cases. This exploratory endeavor potentially
emonstrates the model’s capability to generalize across outbreak scenarios with multiple origins. In essence, our findings suggest
hat when a disease has become widespread, the influence of spatial air traffic mobility, representing the air transport network,
ecomes less consequential to the pandemic’s spread. This is evident as we observed minimal discrepancies between estimated and
ctual reported cases across the three scenarios, regardless of whether we accounted for (time-varying) air traffic volumes.

.3.2. Parameter sensitivity analysis
Furthermore, it is important to recognize that while certain parameters in our model, namely 𝐷𝐼 , 𝐷𝐶 , 𝛽, and 𝑤, are directly

ourced from official statistics, others such as 𝑅0, 𝑈𝑛(0), 𝛼𝑛, and 𝛾 are derived through an optimization process tailored for data
itting. As a result, any adjustments to the directly sourced parameters can influence the derived parameters and, consequently, the
utcomes of our simulations. To gauge the robustness and reliability of our proposed model, we delve into an analysis that examines
ow variations in the provided parameters impact the optimized parameters. Notably, since the parameter 𝛽 solely influences the
atality count and does not impact the derived parameters, its variations do not need to be factored into the model’s optimization
rocess (Zhang et al., 2020). Our findings from the parameter sensitivity analysis, particularly concerning 𝐷𝐼 , 𝐷𝐶 , and 𝑤, are
horoughly presented in Tables A.7, A.8, and A.9.

The sensitivity analysis experiments reveal that 𝑅0 is the most stable parameter, showing minimal fluctuations relative to other
erived parameters. As depicted in Tables A.7 and A.8, while the parameter 𝑈𝐶ℎ𝑖𝑛𝑎(0) does exhibit relative sensitivity to changes
n 𝐷𝐼 and 𝐷𝐶 , referring to the simulated results of initial unreported cases in Fig. H.21, the overall fluctuations remain within an
cceptable and reasonable range. Specifically, all parameters exhibit an upward trend with increasing 𝐷𝐶 , with the magnitude of
his change being more pronounced in Table A.8. This suggests that our derived parameters are particularly sensitive to variations
n 𝐷𝐶 . As presented in Table A.9, the optimized variables, on the whole, remain relatively consistent in the face of changes in
. Additionally, the estimated values for the parameter 𝛼𝐶ℎ𝑖𝑛𝑎 consistently exceed 0.8, indicating a high proportion of individuals

ransitioning from the unreported infectious state to the confirmed state during the early stages of the outbreak. Another intriguing
bservation from our analysis is that the optimized value for 𝛾 consistently remains above 0.85. This reaffirms the notion that, even
midst the pandemic, air transportation remains the predominant mode of inter-country travel. In summation, our model and its
stimated parameters exhibit strong resilience and robustness against fluctuations in other sourced parameters.
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Fig. 13. Comparison between the simulation outcomes using three distinct models and the actual reported case numbers in South Africa and other representative
countries, as per the selection criteria mentioned earlier, during stage 2. The eight sub-figures presented correspond to the experimental results for the following
selected countries: South Africa, Germany, Netherlands, Russia, France, South Korea, United Kingdom, and the United States.
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Fig. 14. Further comparison between the simulation outcomes using three distinct models and the actual reported case numbers in four selected representative
countries, as per the selection criteria mentioned earlier, during stage 3. The four sub-figures presented correspond to the experimental results for the following
selected countries: South Korea, Malaysia, Singapore, and Vietnam.

5.3.3. Scenario analysis
In this section, we delve into two scenarios encompassing both local policy interventions and the implementation of international

travel restrictions. We aim to provide a detailed analysis of the efficacy of these containment strategies in curbing the progression
of the epidemic.

As outlined in Section 4, we incorporate a control factor, denoted as 𝜉, into our model. Here, 𝑡0 signifies the moment when an
intervention is initiated, while 𝑡𝑚 indicates its duration. It is crucial to note that the control strength, 𝜆, is determined by both 𝑡𝑚
and 𝜀. With a fixed value of 𝜀, a larger 𝑡𝑚 suggests a more lenient intervention. In Fig. 15, we depict the trajectories of simulated
confirmed cases20 in the initial countries of both stages, namely China and South Africa, across various intervention start time 𝑡0 and
duration 𝑡𝑚. As illustrated by these diagrams, the timing and intensity of interventions play pivotal roles in mitigating the pandemic’s
spread.

Furthermore, drawing inspiration from Zhang et al. (2020), we have delineated four scenarios, each representing distinct
combinations of 𝑡0 and 𝑡𝑚. Among these, the ‘‘actual scenario’’ mirrors the parameter combination referenced in Section 4, used
during our validation experiments. The earlier an intervention is implemented, the greater the potential to suppress the virus’s
spread. Conversely, even a stringent intervention, if imposed later, tends to be less influential. This is evident from Fig. 15, where late
interventions, regardless of their intensity, result in a higher tally of confirmed cases. Additionally, we discern that the incremental
benefit of reducing infections diminishes with prolonged measures. This underscores the need for a judicious balance between the
intensity of controls and their associated costs.

Reducing air passenger volume on specific origin–destination (O-D) routes critically influences the dynamics of disease spread.
In our study, we focus on two primary routes: China-South Korea and South Africa-United Kingdom. These routes were chosen
based on the origin of the epidemic and the country with the highest number of infections, excluding the origin country, during
the respective periods. We aim to delve into the ripple effects of reducing air traffic on these specific routes and how it impacts the

20 The simulation experiments in this section are designed to run for 60 days, and Figs. 15 and 17 illustrate the simulation findings for the 60𝑡ℎ day.
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Fig. 15. The phase diagrams of the simulated number of confirmed cases under different interventions with starting dates 𝑡0 and duration 𝑡𝑚, annotated to
ighlight four distinct intervention scenarios. The first sub-figure represents the simulated results of China during Stage 1 while the second delves into the
utcomes for South Africa during Stage 2.

pread of the disease in other countries, particularly major aviation hubs like the United States and the United Kingdom. To provide
broader view, we also randomly selected two other countries for analysis.

Fig. 16 illustrates the disease spread trajectory in selected countries following a 30% reduction in air passenger volume on
he mentioned O-D routes from the 24th day.21 A key observation from the data is the latency effect of travel restrictions. While
he immediate aftermath of the restrictions does not show a significant change in infection numbers, a noticeable reduction in
ubsequent cases is evident after a delay of 3–5 days. This suggests that while travel restrictions can be effective, their impact is not
nstantaneous. Furthermore, the reduction in air passenger volume on a specific O-D route does have repercussions on the number
f confirmed cases in other countries. However, this impact is indirect and not as pronounced. The reason for this muted effect can
e attributed to the complex and interwoven nature of the global air transport network, where multiple routes and connections can
ompensate for reduced traffic on a specific route. This conclusion aligns with previous research findings (see Sun et al. (2021b),
u and Chen (2021) and Liu et al. (2022)), which have emphasized the limitations of implementing flight reductions on specific
-D routes. Therefore, while targeted flight reductions can be a part of the solution, a more holistic approach that considers the
roader dynamics of global travel and connectivity is essential for effective pandemic control.

Indeed, the impact of flight reductions on specific O-D routes varies across different countries, reflecting the heterogeneity in
ach country’s epidemic development, control capabilities, and policy measures. For instance, as depicted in Fig. 16 for Stage 2,
ountries like France and the United Kingdom seem to be relatively unaffected by flight reductions, with their epidemic trajectories
emaining largely consistent. In contrast, countries like the United States and the Netherlands exhibit subtle fluctuations in their
ubsequent curves, suggesting that they might be more sensitive to changes in international air traffic. This disparity underscores the
mportance of understanding the unique context and dynamics of each country when evaluating the effectiveness of international
ravel restrictions.

We delve deeper to discern how varying travel restriction scenarios might influence our simulation results. This involves adjusting
he duration and the O-D flow reduction ratio to represent different control strengths. Importantly, we maintain the same O-D route
rom our prior experiment for this analysis. Subsequently, we scrutinize the simulated confirmed cases for another designated country
uring both the COVID-19 and Omicron phases. Therefore, for these two stages, we focus on South Korea and the United Kingdom,
espectively.

As illustrated in Fig. 17, a clear trend emerges: the more significant the flight reduction and the longer its duration, the fewer the
nfections. Moreover, Fig. 17 underscores that imposing international travel restrictions becomes less influential when the disease
as already achieved widespread transmission. This is evident in the case of the United Kingdom during Stage 2, where the disease
ad already permeated extensively. As a result, the simulated number of infections remains largely consistent, irrespective of the
arying degrees of O-D flow reduction. Furthermore, our model’s capability to estimate the variation in infection numbers under
ifferent flight reduction policies provides a foundation to analyze the associated costs. This can pave the way for a cost-effective
nalysis, enabling policymakers to devise optimal flight management strategies.

21 Refer to the actual date when travel restrictions started to be implemented.
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Fig. 16. Epidemic predictions for selected countries during the COVID-19 and Omicron phases, considering travel restrictions on a specific O-D route. The first
four sub-figures depict the simulated outcomes for representative countries during Stage 1. In contrast, the subsequent four sub-figures illustrate the simulated
outcomes for representative countries during Stage 2.
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Fig. 17. The illustration of the simulated number of confirmed cases under a spectrum of air travel restriction scenarios, which are characterized by different
ombinations of reduction ratios and implementation duration. The first sub-figure represents the results for South Korea during Stage 1, while the second delves
nto the outcomes for the United Kingdom during Stage 2.

.4. Experimental summary and discussion

In our spatial impact analysis, we have compared the relationship between four effective distance metrics and the first arrival
imes of COVID-19 and Omicron in different countries/regions. The results indicate that the shortest path effective distance metric
erformed optimally in both scenarios. This conclusion contradicts the findings of Iannelli et al. (2017), which suggested that diseases
ight spread more likely in a random walk manner, meaning they would probabilistically choose any possible path for transmission.

n their study, they highlighted that the distinction between the random walk effective distance and the multiple path effective
istance lay in whether nodes were revisited. Although both metrics consider all possible transmission paths, the former allows for
odes to be revisited, while the latter does not. The dissemination of COVID-19 and the subsequent implementation of travel bans
nd restrictions have significantly reshaped the aviation network’s configuration (Sun et al., 2020). Furthermore, several nations
ave enforced stringent quarantine and isolation measures. As a result, the concept of recurrent visits to specific nodes may not
ccurately depict the prevailing circumstances. This observation implies that the random walk effective distance might not wholly
apture the intricate transmission patterns of COVID-19.

Furthermore, our use of the shortest path effective distance for the initial arrival time of COVID-19, with an 𝑅2 value of 0.84,
ields results that surpass those reported by Adiga et al. (2020) (𝑅2: 0.79) and Kuo and Chiu (2021) (𝑅2: 0.39). This superiority

might be attributed to the fact that, in contrast to Kuo and Chiu (2021), we incorporated the most up-to-date air passenger data and
considered the impact of transfer flights. In comparison to Adiga et al. (2020), we employed the shortest path effective distance, a
metric that more closely mirrors the transmission pathways of COVID-19. Choi et al. (2022) also examined the relationship between
the basic effective distance and the first arrival time of different variants. While the paper did not provide direct 𝑅2 results, our
study distinctively contrasts the fit of multiple effective distance metrics.

In our temporal impact analysis, we have unveiled the pivotal role of air transport networks in the initial stages of the
epidemic’s spread. However, once the epidemic becomes widespread within a country, subsequent travel restrictions appear to
have a diminished impact on the trajectory of the outbreak. Implementing travel restrictions on specific O-D pairs can produce
effects, albeit limited. Furthermore, the restrictive effects often manifest with a delay, not producing immediate results. To achieve
a more substantial containment of the epidemic’s spread, travel restrictions need to be applied across the entire network. The impact
of flight reduction policies varies across different stages of the epidemic. This variation is attributed to the evolving nature of the
disease over time. Moreover, the influence of such policies is heterogeneous across countries. This disparity arises primarily due to
the diverse stages of epidemic development and the differences in policy implementation across nations.

Moreover, compared to previous studies such as Zhang et al. (2020), Chen et al. (2020) and Liu et al. (2022), our model offers
a broader scope. We have explored the impacts of the air transport network, constructed from 24 countries or regions, on the
spread of COVID-19. Additionally, we delved into the effects of international flight reductions on the progression of the epidemic.
In contrast, Zhang et al. (2020), Chen et al. (2020) and Liu et al. (2022) respectively focused solely on the impacts of domestic
travel restrictions on the spread of the epidemic within China, the United States, and Singapore. When juxtaposed with Sheng
26
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detailed sensitivity and scenario analysis experiments. Furthermore, in comparison with Sun et al. (2021b), that study did not employ
time-varying air passenger data. The model in Sun et al. (2021b) mainly examined the accuracy of the disease’s propagation time
without practical exploration of the evolutionary dynamics. In summary, our model’s validation results are robust. As evidenced
by the sensitivity analysis experiments and multiple simulation outcomes, our estimates for relevant parameters, such as 𝑈𝑛(0), are
reliable.

6. Policy implications

We will summarize the policy implications reflected by our model and experimental part from the following six aspects.
Navigating Effective Distances Amidst Disease Dynamics: The limitations of using geographical distances are evident, as

they do not accurately capture the complexities introduced by modern transportation dynamics. With the advent of COVID-19
and associated travel restrictions, the shortest path effective distance has emerged as a more precise predictor of disease spread.
For aviation policymakers, this underscores the importance of closely monitoring key air routes, implementing thorough health
screenings, enforcing quarantine protocols, and sharing real-time data to mitigate the risk of transmission.

Strategic Planning for Aviation Networks in Pandemic Response: The early spread of COVID-19 highlights the critical
influence of aviation network structures. Our findings reveal that this influence wanes during later stages of widespread transmission,
particularly under travel restrictions. These observations suggest that early in pandemics, strategic aviation network planning is
essential for identifying and managing potential hotspots. Such preemptive measures protect public health while aiming to reduce
the impact on global travel and trade, balancing health priorities with economic considerations.

Comprehensive Flight Restriction Strategies with Anticipatory Planning: Travel restrictions often have delayed effects,
underscoring the importance of proactive policy planning. While targeting specific O-D pairs may provide short-term relief, the
overall effectiveness in slowing the pandemic’s spread may be modest. The complex interconnectivity of the aviation network means
the expected benefits of such restrictions could fall short. Policymakers need to carefully evaluate the timing, intensity, and duration
of these strategies, aiming to preempt potential outbreaks rather than in reaction to them.

Tailored Regional Strategies with Cost-Benefit Considerations: The impact of COVID-19 across aviation markets differs, and
ur model reflects these variances, accurately capturing developmental trends. It is crucial for policymakers to tailor interventions
o their region’s unique development stage and traits. Additionally, by simulating the impact of different policies on infection rates
nd comparing these to the costs of implementation, our model aids in finding an optimal balance between economic and health
riorities.
Adaptive Policies for Evolving and Emerging Threats: Different pandemic phases necessitate distinct policies. Our adaptable

odel, informed by the changing nature of COVID-19, supports the development of both reactive and forward-looking measures. This
lexibility arises from incorporating specific viral characteristics, enabling the simulation of spread patterns for new strains, given
heir medical parameters are known. Such capabilities afford critical insights for early interventions. Consequently, the effectiveness
f similar travel restrictions may differ across stages, underscored by the evolving dynamics of the virus.

. Conclusion

In this section, we first introduce the improvements made to our model, along with the corresponding results and analyses. Based
n the findings from our experiments, we summarize the relevant policy implications. Subsequently, we discuss the limitations of
ur study and outline directions for future work.

.1. Results and implication summary

In this paper, we develop a spatial and temporal modeling framework that aims to provide insights into the impact of the
nternational air transport network on the spread of the COVID-19 pandemic. Our focus predominantly lies on two pivotal phases
f COVID-19: its nascent stage and the subsequent Omicron era.

Adapting the conventional effective distance metric to include transfer flights and more recent air passenger data has enabled
ore accurate predictions of pandemics’ initial onset. Our findings underscore that the effective distance offers a more precise
easure than the geographical distance in predicting the spread of the disease. Notably, the shortest path effective distance emerged

s the most optimal metric, consistently outperforming others. Moreover, the non-conformity to the random walk effective distance
an be traced back to the structural shifts in the network, a direct consequence of the travel restrictions imposed during the early
tages of the pandemic.

Transitioning to our network-centric heterogeneous SUCRD mathematical model, we have endeavored to encapsulate the
emporal progression of infectious cases by individual countries. This model serves as an effective tool to evaluate the ramifications of
upplemental intervention controls or travel curtailments on the trajectory of the disease. Our simulation results from this temporal
odel are not only robust but also demonstrate that our parameter estimations, such as 𝑈𝑛(0), are reliable. The model’s accuracy

n capturing the disease’s temporal dynamics, coupled with its robustness against parameter variations, underscores its potential as
valuable tool for policymakers.

The rigorous spatio-temporal analysis yields several critical implications for researchers and stakeholders:

• The international air transport network stands as a linchpin in the early dissemination of pandemics, underscoring the need
27

for vigilant oversight of major air hubs.
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• The shortest path effective distance emerges superior, advocating for a focus on travel patterns over mere geographical
proximity in risk assessment.

• Transfer flights are not mere adjuncts; they are pivotal transmission vectors, necessitating a broader surveillance scope beyond
direct flights.

• Early interventions wield paramount influence, emphasizing the essence of timely, decisive actions.
• The diminishing returns of travel restrictions over an epidemic’s lifespan call for a judicious evaluation of their prolonged

imposition, especially when a disease achieves widespread status.
• The mutable nature of diseases, as exemplified by the contrasting trajectories of COVID-19 and Omicron, necessitates adaptive,

strain-specific interventions.
• Flight reduction policies cast a heterogeneous impact, influenced by a country’s epidemic stage and its intrinsic control

measures, advocating for a tailored rather than templated approach.
• Achieving a balance between health and economic outcomes presents a delicate challenge. As interventions intensify, the

diminishing health benefits must be judiciously weighed against escalating economic costs.

7.2. Limitations and future works

Several limitations of this study are structured as follows: (1) There is a need for refinement in data collection to obtain more
ccurate data. While we utilized load factor data to estimate the number of passengers per flight, this may not fully reflect the actual
perational level of flights. Access to real-time passenger data would provide more accurate experimental results for our research.
dditionally, considerable effort was expended in acquiring Omicron data, estimating the daily increase in cases across countries.
owever, there is still a lack of publicly available, granular daily Omicron case data. (2) The simulation efficiency of the model needs
nhancement. By incorporating heterogeneous model parameters and time-varying air passenger flow into the previous network-
ased compartmental model, we significantly increased the model’s complexity and simulation difficulty. Although we adopted a new
arameter evaluation and simulation framework for our model, its operational efficiency has decreased compared to the previous
imulation process within the original model and requires further improvement. (3) The simulation experiments could be expanded
o encompass a broader array of datasets and scenarios. While our current investigation assessed the influence of the air transport
etwork comprising 24 countries on pandemic propagation, acquiring additional data would enable the model’s application and
esting across a wider selection of countries. Moreover, conducting validations for various COVID-19 variants would offer more
ompelling evidence for the model’s applicability and effectiveness in understanding and managing pandemic dynamics. (4) While
ur study highlights the international air transport network’s impact on pandemic transmission, including detailed domestic air
ravel studies and finer-grained network models could deepen our understanding of intra-country spread. This broader analysis
ould improve our knowledge of transmission dynamics.

For future research directions, our study suggests several promising avenues. (1) Developing simulation frameworks for multiple-
rigin outbreaks or more general scenarios: While our model has shown promising results in simulating the initial development
urves of COVID-19 and Omicron, attempts at simulating multiple-origin outbreak scenarios necessitate further refinement due to
he lack of accurate assessment of model parameters and initial conditions for such stages. Employing machine learning techniques to
stimate initial parameters for simulation runs presents a forward-looking approach for more generalized scenarios. (2) Investigating
he impact of various modes of transportation on pandemic spread: Although air travel dominates the international spread of
andemics (Sun et al., 2021a), other modes of transportation, such as maritime, also play a significant role that cannot be overlooked.
ntegrating data from these modes and adjusting the model structure to assess the roles of multi-modal transportation in the
andemic spread is a worthwhile endeavor. (3) Delving deeper into the role of air transport networks: Previous research and our
ork validate that effective distance metrics related to air passenger data correlate more closely with the initial arrival times of
iseases than geographical distance. It is mentioned in Brockmann and Helbing (2013) that under the effective distance calculation
ramework, complex disease transmission behaviors can be simplified into wave propagation patterns. Exploring whether there exists
more complex, possibly nonlinear relationship between different effective distance metrics and initial arrival times presents an

ntriguing topic. (4) Studying the interplay between air transport networks and disease spread: Our model offers a feasible approach
o quantitatively measure one aspect of this relationship. However, as suggested in Sun et al. (2021d) and Mutascu and Sokic (2023),
he interaction between air transport networks and disease spread is mutual. Developing a quantitative model that can measure this
idirectional influence would provide a more comprehensive perspective for policy formulation, highly appreciated by researchers
nd stakeholders.
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ppendix A. Extended figures and tables

.1. Illustration of the literature summary about the influence of the COVID-19 pandemic on air transportation

See Table A.6.

.2. Plots of the correlation between first arrival time for COVID-19 and four distance metrics

See Fig. A.18.

.3. Plots of the correlation between first arrival time for Omicron and four distance metrics

See Fig. A.19.

Table A.6
Summary of the literature about the influence of the COVID-19 pandemic on air transportation.

Reference Influence area Major findings

Sun et al. (2020) Network structural performance 1. Flight restrictions predominantly targeted long-haul international flights,
resulting in more pronounced effects on international routes than
domestic; 2. Connectivity patterns varied heterogeneously per country and
fluctuated according to the situation of COVID-19.

Sun et al. (2021a) Network structural performance 1. The impact of COVID-19 was homogeneous across the United States,
strongly heterogeneous across Europe, and rather short-lived in China; 2.
Domestic air connections recovered much faster than international air
connections, especially for the Chinese air transport system.

Sun et al. (2021c) Network structural performance 1. The growth of COVID-19 infection cases in all countries exhibited a
two-phase pattern; 2. Nearly all countries probably reacted too slowly in
their decision to reduce flights; 3. Airlines responded differently to
international versus domestic flight operations.

Li et al. (2021b) Network structural performance 1. The rate of change in passenger throughput is closely aligned with the
growth rate of confirmed cases; 2. The air transport reaction to the
pandemic varied significantly across countries.

Zhou et al. (2021) Network structural performance 1. Some connections primarily cater to local travel demand and remain
robust against such disruptions; 2. The world airport networks are resilient
to the disconnection of individual countries but are vulnerable when
countries essential for international transfers are simultaneously
disconnected.

Truong (2021) Passenger/flow demand Merely improving the pandemic situation will not guarantee an increase in
air travel; economic factors must also be considered.

Kim and Sohn (2022) Passenger/flow demand Air passenger behavior is influenced by both internal and external factors,
with travel demand increasing as global COVID cases decline and vaccine
distribution progresses.

Kuo et al. (2022) Network structural performance 1. The popularity rankings of most airports remained relatively stable
during the outbreak; 2. Centrality measures for most hub airports saw
significant declines due to government-imposed travel restrictions.

Li et al. (2022) Network structural performance The early control measures implemented had a positive impact on the
subsequent recovery of the aviation industry and other sectors.

Wang et al. (2023) Passenger/flow demand Given the outbreak’s unpredictability, future provincial outbreaks are
probable, posing additional challenges to the air transportation system.
29
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Fig. A.18. A combination of plots delineating the correlation between Time of Arrival (ToA) for COVID-19 and four distinct distance metrics: geographical,
ffective, random walk, and shortest path distance metrics. Each data point corresponds to a nation or region, identified by an index number. The side histograms
epict the respective distributions of ToA and the distance metrics, illustrating the nuances of travel interconnections in the context of COVID-19’s dissemination.
ountry index mapping: 0: UAE, 1: Australia, 2: Germany, 3: Russia, 4: France, 5: Philippines, 6: South Korea, 7: Canada, 8: Malaysia, 9: USA, 10: Japan, 11:
hailand, 12: Spain, 13: Hong Kong (China), 14: Singapore, 15: India, 16: UK, 17: Vietnam, 18: China.

.4. Illustration of parameter sensitivity analysis

See Tables A.7–A.9.

ppendix B. Identification of transfer flights

In the context of air travel, a transfer flight refers to a journey where passengers change planes at a transit airport to reach their
inal destination (Chen and Li, 2019). The flight chains or flight itineraries describe the sequence of airports that an aircraft travels
hrough Wu and Law (2019). Given the significant indirect impact of transfer flights on the spread of COVID-19, it is imperative to
irst identify the flight chains or flight itineraries to determine the transfer flights.
30
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Fig. A.19. Comparative plots showcasing the relationship between the Time of Arrival (ToA) of the Omicron variant and four distance metrics: geographical,
ffective, random walk, and shortest path distance metrics. Each point represents a country, annotated with index numbers. Marginal histograms outline the
istributions for each metric and ToA. Index-to-country mapping: 0: UAE, 1: Brazil, 2: Germany, 3: Russia, 4: France, 5: Netherlands, 6: Canada, 7: Malaysia, 8:
SA, 9: Mexico, 10: South Africa, 11: Japan, 12: Turkey, 13: Spain, 14: Singapore, 15: India, 16: UK, 17: China.

Table A.7
Sensitivity analysis for 𝐷𝐼 .
𝐷𝐼 5 9.2 (In this paper) 15

𝑅0 2.35 2.33 2.32
𝛼𝐶ℎ𝑖𝑛𝑎 0.85 0.93 0.89
𝑈𝐶ℎ𝑖𝑛𝑎(0) 456 414 366
𝛾 0.95 0.90 0.92

Referring to Cai et al. (2021), a flight itinerary is defined as a sequence of flights that an aircraft undertakes from its origin to its
inal destination. The identification of a specific aircraft executing a particular flight itinerary can be discerned through its unique
egistration number. This method of determining aircraft routings via the same registration number is also emphasized in Kafle and
ou (2016) and Wu and Law (2019). Additionally, these sources highlight that such flight transfers occur within the same calendar
31
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Table A.8
Sensitivity analysis for 𝐷𝐶 .
𝐷𝐼 4 8.4 (In this paper) 12

𝑅0 2.25 2.33 2.35
𝛼𝐶ℎ𝑖𝑛𝑎 0.86 0.93 0.96
𝑈𝐶ℎ𝑖𝑛𝑎(0) 329 414 488
𝛾 0.88 0.90 0.95

Table A.9
Sensitivity analysis for 𝑤.
𝑤 0.01% 0.042% (In this paper) 0.12%

𝑅0 2.32 2.33 2.33
𝛼𝐶ℎ𝑖𝑛𝑎 0.83 0.93 0.87
𝑈𝐶ℎ𝑖𝑛𝑎(0) 353 414 389
𝛾 0.93 0.90 0.96

Table B.10
An example of identified transfer flight chains.

Reg number Departure airport Arrival airport Departure time Arrival time

9MAGH WMKK WBGR 2020-02-01 06:55 2020-02-01 09:20
9MAGH WBGR WMKK 2020-02-01 09:45 2020-02-01 12:00
9MAGH WMKK VTSP 2020-02-01 12:25 2020-02-01 14:00
9MAGH VTSP WMKK 2020-02-01 14:30 2020-02-01 16:00
9MAGH WMKK WBGS 2020-02-01 16:30 2020-02-01 18:35
9MAGH WBGS WMKK 2020-02-01 19:00 2020-02-01 20:55
9MAGH WMKK VOMM 2020-02-01 21:30 2020-02-01 01:25

day. Based on the methodologies proposed in the aforementioned literature, we have formulated the following rules for identifying
flight chains in this study:

• All flights within the chain are scheduled to depart on the same calendar day.
• Each flight in the sequence must have an identical registration number.
• The airport at which one flight in the chain arrives should be the departure airport for the succeeding flight in the sequence.

Furthermore, the departure time of the subsequent flight should be after the arrival time of the preceding flight.
• The arrival time of a flight in the sequence must precede the departure time of the next flight, ensuring a minimum time

differential of 15 min. This means that the minimum turnaround time for flights at a specific airport is set at 15 min.

After identifying the flight chains, we further discern the transfer flights. For instance, consider a flight chain 𝐴 → 𝐵 → 𝐶. Here,
he aircraft starts at airport 𝐴, stops at airport 𝐵, and finally reaches airport 𝐶. In this scenario, if a passenger boards the plane at
irport 𝐴 and disembarks at airport 𝐶, they have taken a transfer flight via airport 𝐵. However, if the flight chain is 𝐴 → 𝐵 → 𝐴,
t means the aircraft starts at airport 𝐴, goes to airport 𝐵, and then returns to airport 𝐴. In this case, there are no transfer flights
ecause the aircraft returns to its starting point. Table B.10 provides a clear example of how to identify transfer flights from a typical
light chain:

• The second and third records show a flight chain of 𝑊𝐵𝐺𝑅 → 𝑊𝑀𝐾𝐾 → 𝑉 𝑇𝑆𝑃 . This indicates a transfer flight from 𝑊𝐵𝐺𝑅
to 𝑉 𝑇𝑆𝑃 via 𝑊𝑀𝐾𝐾.

• The first two records show a flight chain of 𝑊𝑀𝐾𝐾 → 𝑊𝐵𝐺𝑅 → 𝑊𝑀𝐾𝐾. Since the aircraft returns to its starting point,
there are no transfer flights in this chain.

• The example also includes transfer flights from 𝑉 𝑇𝑆𝑃 to 𝑊𝐵𝐺𝑆 and from 𝑊𝐵𝐺𝑆 to 𝑉 𝑂𝑀𝑀 .

y associating each airport with its respective country, we can create a network that represents the transfer flights between different
ations. This network can be invaluable in understanding the connectivity and flow of passengers between countries, especially in
he context of studying the spread of diseases like COVID-19.

ppendix C. Estimation of 𝒘

𝑤 is defined as the average ratio between a country’s daily total air passenger flux and its population. Thus, we can obtain
= 𝐹∕𝑃 , where 𝐹 =

∑

𝑚𝑛 𝑓𝑚𝑛 denotes the total air passenger flux for all countries, and 𝑓𝑚𝑛 represents the absolute air passenger
olume between country pairs 𝑚 and 𝑛. Besides, 𝑃 =

∑

𝑘 𝑝𝑘 is the total population for all countries where 𝑝𝑘 is the population of
ountry 𝑘.

We calculate 𝜔 in the manner described above. Firstly, we estimate the number of passengers on each aircraft based on the
32

cquired load factor data, as described in Section 3. Subsequently, we accumulate this data over time to calculate the number of air
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Fig. D.20. A toy example of an air traffic network.

passengers moving through these 105 international airports over a year. Ultimately, we estimate the total number of people moving
through these airports in a year to be 𝐹 = 742319578. The total population of these countries/regions is 𝑃 = 4842267302. Thus, we
ultimately have 𝜔 = 𝐹∕(𝑃 ∗ 365) = 742319578∕(4842267302 ∗ 365) = 0.042%.

Appendix D. Examples for calculating the effective distance

As illustrated in Section 4.1.1, the calculation of effective distance is simple and only requires the knowledge of the flux
percentage of each node. In the example of Fig. D.20, with known flux percentages 𝑃𝐴𝐵 , 𝑃𝐴𝐶 and 𝑃𝐴𝐷, one can easily calculate
the effective distance between node A and B, A and C, A and D to be 1 − 𝑙𝑜𝑔(𝑃𝐴𝐵), 1 − 𝑙𝑜𝑔(𝑃𝐴𝐶 ) and 1 − 𝑙𝑜𝑔(𝑃𝐴𝐷).

However, the computation of random walk effective distance is more challenging. Still using Fig. D.20 as an example, if we
want to obtain the probability of A reaching D in a t-step random walk 𝐻𝐴𝐷(𝑡), we first need to calculate the (𝑡 − 1)th transition
probability matrix. In the beginning, we already have the transition probability matrix:

⎡

⎢

⎢

⎢

⎢

⎣

0 𝑃𝐴𝐵 𝑃𝐴𝐶 𝑃𝐴𝐷
𝑃𝐵𝐴 0 𝑃𝐵𝐶 𝑃𝐵𝐷
𝑃𝐶𝐴 𝑃𝐶𝐵 0 𝑃𝐶𝐷
𝑃𝐷𝐴 𝑃𝐷𝐵 𝑃𝐷𝐶 0

⎤

⎥

⎥

⎥

⎥

⎦

(D.1)

Since we want node D to be visited exactly at the t-th step, we need to remove the 4th column and row and get a reduced matrix
𝐻 :

⎡

⎢

⎢

⎣

0 𝑃𝐴𝐵 𝑃𝐴𝐶
𝑃𝐵𝐴 0 𝑃𝐵𝐶
𝑃𝐶𝐴 𝑃𝐶𝐵 0

⎤

⎥

⎥

⎦

(D.2)

Taking the (𝑡 − 1)th power of matrix 𝐻 , we will obtain the (𝑡 − 1)th transition probability among A, B and C. To get the desired
probability, we just need to time 𝐻 𝑡−1 with

[

𝑃𝐴𝐷, 𝑃𝐵𝐷, 𝑃𝐶𝐷
]𝑇 , and the result will be the probability of node A,B,C visiting node D

in a t-step random walk. After that,

𝐷𝑅𝑊
𝑚𝑛 = − log

( ∞
∑

𝑡=1
𝑒−𝑡𝐻𝑚𝑛(𝑡)

)

(D.3)

can be used to compute the random walk effective distance.

Appendix E. Data curation for Omicron data

Compared to COVID-19, the accurate data of daily confirmed cases for Omicron is limited. On the website of Our World In
Data, the share of the Omicron variant in all analyzed sequences is presented every two weeks while we also have access to weekly
updated Omicron confirmed cases in countries from the GISAID Initiative. Firstly, we use two weeks as a period and the Omicron
data is recovered by the daily confirmed COVID-19 cases times the share of the Omicron variant in that period. For example, the
share of Omicron in the United States from 2021.12.13 to 2021.12.27 is 59.17%. In that period (2021.12.13 ∼ 2021.12.27), we find
out the daily confirmed cases in the United States and time it with 59.17%. The resulting number will be the Omicron confirmed
cases on that specific day. We also apply the GISAID data for double-checking to ensure that we obtain relatively accurate reported
confirmed cases for Omicron. After obtaining the confirmed cases, we estimate the number of Omicron recovered and death cases
by multiplying the Omicron confirmed cases by the COVID-19 recovery rate and death rate in that period.
33
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Appendix F. Supplement and correction of the first case for COVID-19 and Omicron

The COVID-19 data is obtained from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.
owever, the datasets of Johns Hopkins University only contain data starting from 2020.01.22. For some countries close to China,

he first case may arrive before 2020.1.22. Therefore, we correct the first case for COVID-19 by checking the news on the website of
he health department in the corresponding country. Expressly, in China, the origin of the COVID-19 outbreak is set to be 2019.12.31.
n Thailand, Japan, and South Korea, the first case of COVID-19 is 2020.01.13, 2020.01.15, and 2020.01.20, respectively. Since the
micron data is obtained by the COVID-19 data timing a weekly share, the first case of Omicron in each country can have an error

n 0∼ 7 days. Thus, the first case of Omicron is also revised by checking the news in each country.

ppendix G. Calculation of 𝑫𝑰 and 𝑫𝑪

We apply the method utilized in Zhang et al. (2020) to calculate these two parameters. As mentioned in Section 4.3, 𝐷𝐼 represents
he number of days from the moment a case is infectious until it is confirmed, recovered, or dead. In order to estimate 𝐷𝐼 , we choose
ases that visited Wuhan prior to exhibiting symptoms and assume they were infected on their first day in Wuhan. We also assume
hat the time between infection and infectiousness can be disregarded. The case data shows that the average time from infection to
he beginning of symptoms is 𝑇𝑠 = 4.0. Also, 𝑇ℎ = 5.9 is the time from infection to hospital admission and the period between infection
nd confirmation is 𝑇𝐿 = 8.4. In addition, we estimate that the interval between the onset of symptoms and recovery or death is
𝑠, end = 14 days. Moreover, the time between hospital admission and death or recovery is 𝑇ℎ,end = 10.2 days. Besides, the time

duration from being confirmed to be recovered or dead is 𝐷𝐶 = 𝑇end −𝐷𝐼 , where 𝑇end =
[(

𝑇𝑠 + 𝑇𝑠, end
)

+
(

𝑇ℎ + 𝑇ℎ,end
)]

∕2 = 17.5
days. Thus, we have 𝐷𝐶 = 9.2 days.

We also employ the method for Omicron case data (Lewnard et al., 2022). On average, the duration from infected to onset
ymptoms 𝑇𝑠 = 3.0 while the duration from infected to admission hospital is 𝑇ℎ = 4.5. Similarly, we have 𝐷𝐼 = 4.0, 𝑇𝑠, end = 7.0

and 𝑇ℎ,end = 5.0 days. The time duration from being confirmed to be recovered or dead is 𝐷𝐶 = 𝑇end − 𝐷𝐼 , where 𝑇end =
[(

𝑇𝑠 + 𝑇𝑠, end
)

+
(

𝑇ℎ + 𝑇ℎ,end
)]

∕2 = 9.8 days. Thus, we get 𝐷𝐶 = 5.8 days.

Appendix H. Derivation and estimation of 𝑼𝒏(𝟎)

In our model, there are four free parameters that need to be estimated. These are:

• 𝑅0 - the basic reproduction number.
• 𝑈𝑛(0) - the initial unreported infectious cases in country 𝑛.
• 𝛼𝑛 - the probability of confirmation for the infectious cases to become confirmed or recovered in country 𝑛.
• 𝛾 - the ratio of air transportation in total travel modes.

To estimate these parameters, we fit the time series data of reported confirmed cases for the selected countries/regions. Specifically,
we estimate these combined parameters by solving the following optimization problem:

min
𝑅0 ,𝑈𝑛(0) ,𝛼𝑛 ,𝛾

𝐿 =
∑

𝑛

∑

𝑡

[(

𝑐𝑛(𝑡)𝑁𝑛
)

−
(

𝐶∗
𝑛 (𝑡)

)]2 (H.1)

s.t.
𝜕𝑠𝑛
𝜕𝑡

= −
𝑅0
𝐷𝐼

𝜉𝑛𝑠𝑛𝑢𝑛 +
𝜔
𝛾
∑

𝑚≠𝑛
𝑃 𝑡
𝑚𝑛

(

𝑠𝑚 − 𝑠𝑛
)

𝜕𝑢𝑛
𝜕𝑡

=
𝑅0
𝐷𝐼

𝜉𝑛𝑠𝑛𝑢𝑛 −
1
𝐷𝐼

𝑢𝑛 +
𝜔
𝛾
∑

𝑚≠𝑛
𝑃 𝑡
𝑚𝑛

(

𝑢𝑚 − 𝑢𝑛
)

𝜕𝑐𝑛
𝜕𝑡

=
𝛼𝑛
𝐷𝐼

𝑢𝑛 −
1
𝐷𝐶

𝑐𝑛

𝜕𝑟𝑛
𝜕𝑡

=
(1 − 𝛽)

(

1 − 𝛼𝑛
)

𝐷𝐼
𝑢𝑛 +

(1 − 𝛽)
𝐷𝐶

𝑐𝑛 +
𝜔
𝛾
∑

𝑚≠𝑛
𝑃 𝑡
𝑚𝑛

(

𝑟𝑚 − 𝑟𝑛
)

𝜕𝑑𝑛
𝜕𝑡

=
𝛽
(

1 − 𝛼𝑛
)

𝐷𝐼
𝑢𝑛 +

𝛽
𝐷𝐶

𝑐𝑛

(H.2)

The objective is to minimize the sum of squared differences between the actual and estimated confirmed cases over all countries
nd days, subject to the constraints imposed by the aforementioned system of differential equations. We use the initial period of
OVID-19 as an example to explain how these parameters were derived. In this scenario, the initial conditions are:

• 𝑢𝑛(0) = 𝑈𝐶ℎ𝑖𝑛𝑎(0)∕𝑁𝐶ℎ𝑖𝑛𝑎 for 𝑛 = China, and 0 for other countries/regions. The initial unreported infectious cases need to be
estimated.

• 𝑐𝑛(0) = 𝐶𝐶ℎ𝑖𝑛𝑎(0)∕𝑁𝐶ℎ𝑖𝑛𝑎 for 𝑛 = China, and 0 for other countries/regions. The initial confirmed cases refer to Zhang et al.
(2020).

• 𝑠 (0) = 1 − 𝑖 (0) − 𝑐 (0) for 𝑛 = China, and 1 for other countries/regions.
34
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D

Fig. H.21. The distributions of estimated parameter 𝑈𝑛(0) with 20, 30 and 50 experiments. The dashed lines show the medians of the distributions.

• 𝑑𝑛(0) = 𝑟𝑛(0) for any countries/regions.

Solving this optimization problem is not straightforward as it deviates from traditional optimization paradigms. We employ the
ifferential Evolution Algorithm22 to output the optimized parameter combinations, which are then input into the ODE solver.23

This solver computes the estimated number of infections for different countries/regions at various time points. By comparing the
cumulative error between these estimates and the actual infection numbers for these times and regions, we iteratively refine
and optimize the parameters output by the Differential Evolution algorithm. Ultimately, the optimal parameter combination,
corresponding to the minimal objective function value, is produced after a specified maximum number of iterations. To enhance
search efficiency, we also incorporate parallel evaluation and multiple population evolution training techniques.

To validate the reliability of our parameter estimation method, we conducted 50 parallel searches and recorded the optimal
parameter outputs from each simulation experiment, as well as the median values of the overall results in Table 4. Fig. H.21 presents
histograms of estimated parameter values of 𝑈𝑛(0) across three experiment counts: 20, 30, and 50. As the number of experiments
increases, the distributions become more centered and narrower, indicating enhanced precision in parameter estimation. Notably,
the overall distributions exhibit minimal shifts, underscoring the stability and consistency of our parameter estimates.
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